Skip to main content
Log in

Mining and Characterization of Thermophilic Glucose Isomerase Based on Virtual Probe Technology

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Fructose, which is produced by the isomerization of glucose isomerase, is a crucial precursor for the biosynthesis of rare sugars. In this study, thermophilic glucose isomerases (GI) from Caldicellulosiruptor acetigenus (CAGI), Thermoanaerobacter thermocopriae (TTGI), and Thermotoga petrophila (TPGI) were screened from GenBank database by a virtual probe and were successfully expressed in Escherichia coli BL21(DE3). The results of characterization demonstrated that the optimal pH for CAGI and TTGI were 8.0 and were maintained at 80% in a slightly acidic environment. The relative residual activities of CAGI and TTGI were found to be 40.6% and 52.6%, respectively, following an incubation period of 24 h at 90 ℃. Furthermore, CAGI and TTGI exhibited superior catalytic performance that their reaction equilibrium both reached only after an hour at 85 ℃ with 200 g/L glucose, and the highest conversion rates were 54.2% and 54.1%, respectively. This study identifies competitive enzyme candidates for fructose production in the industry with appreciable cost reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Riby, J. E., Fujisawa, T., & Kretchmer, N. (1993). Fructose absorption. American Journal of Clinical Nutrition, 58, 748–753.

    Article  Google Scholar 

  2. Jang, C., Hui, S., Lu, W., Cowan, A. J., Morscher, R. J., Lee, G., Liu, W., Tesz, G. J., Birnbaum, M. J., & Rabinowitz, J. D. (2018). The small intestine converts dietary fructose into glucose and organic acids. Cell metabolism, 27, 351–361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shinn, A. K., & Greenfield, S. F. (2010). Topiramate in the treatment of substance-related disorders: A critical review of the literature. The Journal of Clinical Psychiatry, 71, 634–648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li, H., Yang, S., Saravanamurugan, S., & Riisager, A. (2017). Glucose isomerization by enzymes and chemo-catalysts: Status and current advances. Acs Catalysis, 7, 3010–3029.

    Article  CAS  Google Scholar 

  5. Campos, V. C., & Tappy, L. (2016). Physiological handling of dietary fructose-containing sugars: Implications for health. International Journal of Obesity, 40, S6–S11.

    Article  CAS  PubMed  Google Scholar 

  6. Moulin, S., Seematter, G., & Seyssel, K. (2017). Fructose use in clinical nutrition: Metabolic effects and potential consequences. Current Opinion in Clinical Nutrition and Metabolic Care, 20, 272–278.

    Article  CAS  PubMed  Google Scholar 

  7. Araya, E., Urrutia, P., Romero, O., Illanes, A., & Wilson, L. (2019). Design of combined crosslinked enzyme aggregates (combi-CLEAs) of beta-galactosidase and glucose isomerase for the one-pot production of fructose syrup from lactose. Food Chemistry, 288, 102–107.

    Article  CAS  PubMed  Google Scholar 

  8. Wu, R. C. Y., Botts, S. R., Johnson-Henry, K. C., Landberg, E., Abrahamsson, T. R., & Sherman, P. M. (2022). Variations in the composition of human milk oligosaccharides correlates with effects on both the intestinal epithelial barrier and host inflammation: A pilot study. Nutrients, 14, 1014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Munshi, P., Snell, E. H., van der Woerd, M. J., Judge, R. A., Myles, D. A. A., Ren, Z., & Meilleur, F. (2014). Neutron structure of the cyclic glucose-bound xylose isomerase E186Q mutant. Acta Crystallographica Section D: Structural Biology, 70, 414–420.

    Article  CAS  Google Scholar 

  10. Bhosale, S. H., Rao, M. B., & Deshpande, V. V. (1996). Molecular and industrial aspects of glucose isomerase. Microbiological Reviews, 60, 280–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu, Z. Q., Zheng, W., Huang, J. F., Jin, L. Q., Jia, D. X., Zhou, H. Y., Xu, J. M., Liao, C. J., Cheng, X. P., Mao, B. X., & Zheng, Y. G. (2015). Improvement and characterization of a hyperthermophilic glucose isomerase from Thermoanaerobacter ethanolicus and its application in production of high fructose corn syrup. Journal of Industrial Microbiology & Biotechnology, 42, 1091–1103.

    Article  CAS  Google Scholar 

  12. Xu, H., Shen, D., Wu, X. Q., Liu, Z. W., & Yang, Q. H. (2014). Characterization of a mutant glucose isomerase from Thermoanaerobacterium saccharolyticum. Journal of Industrial Microbiology & Biotechnology, 41, 1581–1589.

    Article  CAS  Google Scholar 

  13. Cho, J. W., Han, B. G., Park, S. Y., Kim, S. J., Kim, M. D., & Lee, B. I. (2013). Overexpression, crystallization and preliminary X-ray crystallographic analysis of a putative xylose isomerase from Bacteroides thetaiotaomicron. Acta Crystallographica, Section F: Structural Biology and Crystallization Communications, 69, 1127–1130.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ben Hlima, H., Bejar, S., Riguet, J., Haser, R., & Aghajari, N. (2013). Identification of critical residues for the activity and thermostability of Streptomyces sp SK glucose isomerase. Applied Microbiology and Biotechnology, 97, 9715–9726.

    Article  CAS  PubMed  Google Scholar 

  15. Jenkins, J., Janin, J., Rey, F., Chiadmi, M., Vantilbeurgh, H., Lasters, I., Demaeyer, M., Vanbelle, D., Wodak, S. J., Lauwereys, M., Stanssens, P., Mrabet, N. T., Snauwaert, J., Matthyssens, G., & Lambeir, A. M. (1992). Protein engineering of xylose (glucose) isomerase from Actinoplanes-missouriensis.1. crystallography and site-directed mutagenesis of metal-binding sites. Biochemistry, 31, 5449–5458.

    Article  CAS  PubMed  Google Scholar 

  16. Vuilleumier, S. (1993). Worldwide production of high-fructose syrup and crystalline fructose. American Journal of Clinical Nutrition, 58, 733–736.

    Article  Google Scholar 

  17. Lee, C., & Zeikus, J. G. (1991). Purification and characterization of thermostable glucose-isomerase from Clostridium-thermosulfurogenes and Thermoanaerobacter strain b6a. Biochemical Journal, 273, 565–571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Karaoglu, H., Yanmis, D., Sal, F. A., Celik, A., Canakci, S., & Belduz, A. O. (2013). Biochemical characterization of a novel glucose isomerase from Anoxybacillus gonensis G2(T) that displays a high level of activity and thermal stability. Journal of Molecular Catalysis b-enzymatic, 97, 215–224.

    Article  CAS  Google Scholar 

  19. Kim, B. C., Yu, S. N., Kim, K. Y., Lee, J. S., Pyun, Y. R., & Ahn, S. C. (2010). Cloning, expression and characterization of xylose isomerase, XylA, from Caldanaerobacter subterraneus subsp yonseiensis. Biotechnology Letters, 32, 929–933.

    Article  CAS  PubMed  Google Scholar 

  20. Neifar, S., Ben Hlima, H., Mhiri, S., Mezghani, M., Bouacem, K., Ibrahim, A. H., Jaouadi, B., Bouanane-Darenfed, A., & Bejar, S. (2019). A novel thermostable and efficient Class II glucose isomerase from the thermophilic Caldicoprobacter algeriensis: Biochemical characterization, molecular investigation, and application in high fructose syrup production. International Journal of Biological Macromolecules, 129, 31–40.

    Article  CAS  PubMed  Google Scholar 

  21. Dai, C. X., Miao, T. T., Hai, J. P., Xiao, Y. Y., Li, Y., Zhao, J. R., Qiu, H. L., & Xu, B. (2020). A novel glucose isomerase from Caldicellulosiruptor bescii with great potentials in the production of high-fructose corn syrup. BioMed Research International, 2020(7), 1871934.

    Google Scholar 

  22. Srih-Belghith, K., & Bejar, S. (1998). A thermostable glucose isomerase having a relatively low optimum pH: Study of activity and molecular cloning of the corresponding gene. Biotechnology Letters, 20, 553–556.

    Article  CAS  Google Scholar 

  23. Fatima, B., Aftab, M. N., & Ikram-ul, H. (2016). Cloning, purification, and characterization of xylose isomerase from Thermotoga naphthophila RKU-10. Journal of Basic Microbiology, 56, 949–962.

    Article  CAS  PubMed  Google Scholar 

  24. Rigoldi, F., Donini, S., Redaelli, A., Parisini, E., & Gautieri, A. (2018). Review: Engineering of thermostable enzymes for industrial applications. APL Bioengineering, 011501, 2–17.

    Google Scholar 

  25. Beerens, K., Mazurenko, S., Kunka, A., Marques, S. M., Hansen, N., Musil, M., Chaloupkova, R., Waterman, J., Brezovsky, J., Bednar, D., Prokop, Z., & Damborsky, J. (2018). Evolutionary analysis as a powerful complement to energy calculations for protein stabilization. ACS Catalysis, 8, 9420–9428.

    Article  CAS  Google Scholar 

  26. Cheng, Z., Lan, Y., Guo, J., Ma, D., Jiang, S., Lai, Q., Zhou, Z., & Peplowski, L. (2020). Computational design of nitrile hydratase from Pseudonocardia thermophila JCM3095 for improved thermostability. Molecules, 25, 4806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dvorak, P., Bednar, D., Vanacek, P., Balek, L., Eiselleova, L., Stepankova, V., Sebestova, E., Bosakova, M. K., Konecna, Z., Mazurenko, S., Kunka, A., Vanova, T., Zoufalova, K., Chaloupkova, R., Brezovsky, J., Krejci, P., Prokop, Z., Dvorak, P., & Damborsky, J. (2018). Computer-assisted engineering of hyperstable fibroblast growth factor 2. Biotechnology and Bioengineering, 115, 850–862.

    Article  CAS  PubMed  Google Scholar 

  28. Musil, M., Stourac, J., Bendl, J., Brezovsky, J., Prokop, Z., Zendulka, J., Martinek, T., Bednar, D., & Damborsky, J. (2017). FireProt: Web server for automated design of thermostable proteins. Nucleic Acids Research, 45, W393–W399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Willard, L., Ranjan, A., Zhang, H. Y., Monzavi, H., Boyko, R. F., Sykes, B. D., & Wishart, D. S. (2003). VADAR: A web server for quantitative evaluation of protein structure quality. Nucleic Acids Research, 31, 3316–3319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46, W296–W303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Colovos, C., & Yeates, T. O. (1993). Verification of protein structures - Patterns of nonbonded atomic interactions. Protein Science, 2, 1511–1519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30, 2785–2791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shen, J. D., Cai, X., Ni, Y. W., Jin, L. Q., Liu, Z. Q., & Zheng, Y. G. (2021). Structural insights into the thermostability mechanism of a nitrile hydratase from Caldalkalibacillus thermarum by comparative molecular dynamics simulation. Proteins-Structure Function and Bioinformatics, 89, 978–987.

    Article  CAS  Google Scholar 

  34. Khramtsov, P., Kalashnikova, T., Bochkova, M., Kropaneva, M., Timganova, V., Zamorina, S., & Rayev, M. (2021). Measuring the concentration of protein nanoparticles synthesized by desolvation method: Comparison of Bradford assay, BCA assay, hydrolysis/UV spectroscopy and gravimetric analysis. International Journal of Pharmaceutics, 599, 18.

    Article  Google Scholar 

  35. Lineweaver, H., & Burk, D. (1934). The determination of enzyme dissociation constants. Journal of the American Chemical Society, 56, 658–666.

    Article  CAS  Google Scholar 

  36. Chu, L., Huang, J., Muhammad, M., Deng, Z., & Gao, J. (2020). Genome mining as a biotechnological tool for the discovery of novel marine natural products. Critical reviews in biotechnology, 40, 571–589.

    Article  CAS  PubMed  Google Scholar 

  37. Liu, Z. Q., Dong, S. C., Yin, H. H., Xue, Y. P., Tang, X. L., Zhang, X. J., He, J. Y., & Zheng, Y. G. (2017). Enzymatic synthesis of an ezetimibe intermediate using carbonyl reductase coupled with glucose dehydrogenase in an aqueous-organic solvent system. Bioresource Technology, 229, 26–32.

    Article  CAS  PubMed  Google Scholar 

  38. Bandlish, R. K., Hess, J. M., Epting, K. L., Vieille, C., & Kelly, R. M. (2002). Glucose-to-fructose conversion at high temperatures with xylose (glucose) isomerases from Streptomyces murinus and two hyperthermophilic Thermotoga species. Biotechnology and Bioengineering, 80, 185–194.

    Article  CAS  PubMed  Google Scholar 

  39. Jia, D. X., Zhou, L., & Zheng, Y. G. (2017). Properties of a novel thermostable glucose isomerase mined from Thermus oshimai and its application to preparation of high fructose corn syrup. Enzyme and Microbial Technology, 99, 1–8.

    Article  CAS  PubMed  Google Scholar 

  40. Kim, B. C., Yu, S. N., Kim, K. Y., Lee, J. S., Pyun, Y. R., & Ahn, S. C. (2010). Cloning, expression and characterization of xylose isomerase, xylA, from Caldanaerobacter subterraneus subsp yonseiensis. Biotechnol Letters, 32, 929–933.

    Article  CAS  Google Scholar 

  41. Chauthaiwale, J., & Rao, M. (1994). Production and purification of extracellular D-xylose isomerase from an alkaliphilic, Thermophilic bacillus sp. Applied and Environmental Microbiology, 60, 4495–4499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen, Q. M., Zhang, W. L., & Mu, W. M. (2021). Molecular Dynamics simulation for food enzyme engineering: Why this technique should be encouraged to learn. Journal of Agricultural and Food Chemistry, 69, 4–6.

    Article  CAS  PubMed  Google Scholar 

  43. Renugopalakrishnan, V., Garduno-Juarez, R., Narasimhan, G., Verma, C. S., Wei, X., & Li, P. Z. (2005). Rational design of thermally stable proteins: Relevance to bionanotechnology. Journal of Nanoscience and Nanotechnology, 5, 1759–1767.

    Article  CAS  PubMed  Google Scholar 

  44. Whitlow, M., Howard, A. J., Finzel, B. C., Poulos, T. L., Winborne, E., & Gilliland, G. L. (1991). A metal-mediated hydride shift mechanism for xylose isomerase based on the 1.6 Å Streptomyces-rubiginosus structures with xylitol and D-xylose. Proteins-Structure Function and Genetics, 9, 153–173.

    Article  CAS  Google Scholar 

  45. Kovalevsky, A. Y., Hanson, L., Fisher, S. Z., Mustyakimov, M., Mason, S. A., Forsyth, V. T., Blakeley, M. P., Keen, D. A., Wagner, T., Carrell, H. L., Katz, A. K., Glusker, J. P., & Langan, P. (2010). Metal ion roles and the movement of hydrogen during reaction catalyzed by D-xylose isomerase: A joint X-ray and neutron diffraction study. Structure, 18, 688–699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kaneko, T., Saito, K., Kawamura, Y., & Takahashi, S. (2001). Molecular cloning of acid-stable glucose isomerase gene from Streptomyces olivaceoviridis E-86 by a simple two-step PCR method, and its expression in Escherichia coli. Bioscience Biotechnology and Biochemistry, 65, 1054–1062.

    Article  CAS  PubMed  Google Scholar 

  47. Sriprapundh, D., Vieille, C., & Zeikus, J. G. (2000). Molecular determinants of xylose isomerase thermal stability and activity: Analysis of thermozymes by site-directed mutagenesis. Protein Engineering, 13, 259–265.

    Article  CAS  PubMed  Google Scholar 

  48. Vieille, C., Hess, J. M., Kelly, R. M., & Zeikus, J. G. (1995). Xyla cloning and sequencing and biochemical-characterization of xylose isomerase from Thermotoga-neapolitana. Applied and environmental microbiology, 61, 1867–1875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Brown, S. H., Sjøholm, C., & Kelly, R. M. (1993). Purification and characterization of a highly thermostable glucose isomerase produced by the extremely thermophilic eubacterium, Thermotoga maritima. Biotechnology and Bioengineering, 41, 878–886.

    Article  CAS  PubMed  Google Scholar 

  50. Deng, H., Chen, S., Wu, D., Chen, J., & Wu, J. (2014). Heterologous expression and biochemical characterization of glucose isomerase from Thermobifida fusca. Bioprocess and Biosystems Engineering, 37, 1211–1219.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Innovation Demonstration Special Project of Henan Province in China (grant number 201111110100) and Major Science and Technology Projects for Public Welfare of Henan Province in China (grant number 201300110300).

Author information

Authors and Affiliations

Authors

Contributions

Yu-Qi Dong: methodology, software, validation, investigation, and writing—original draft. Ji-Dong Shen: methodology, software, validation, investigation, and writing—original draft. Long Pan: validation and investigation. Ji-Hong Huang: visualization and supervision. Zhi-Qiang Liu: visualization and supervision. Yu-Guo Zheng: supervision.

Corresponding authors

Correspondence to Ji-Hong Huang or Zhi-Qiang Liu.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Yes. All authors agreed to participate in this research.

Consent for Publication

Yes. All authors have approved the last version of the manuscript for its submission.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3158 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, YQ., Shen, JD., Pan, L. et al. Mining and Characterization of Thermophilic Glucose Isomerase Based on Virtual Probe Technology. Appl Biochem Biotechnol 195, 4399–4413 (2023). https://doi.org/10.1007/s12010-023-04349-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04349-5

Keywords

Navigation