Skip to main content
Log in

Phytochemical Analysis, GC–MS Identification of Bioactive Compounds, and In Vitro Antioxidant Activities of Resin of Garcinia indica (Thouars) Choisy

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The objective of this study was to evaluate phytochemicals present in the resin of Garcinia indica (Gamboge). We assessed the phytochemical constituents and antioxidant potential of acetone, methanol, and water extracts of resin. Acetone and methanol extracts contain a high amount of phenolics (183.90 and 182.85 mg GAE (gallic acid equivalent)/g) and flavonoids (72.65 and 71.33 mg QE (quercetin equivalent)/g), respectively, whereas methanol extract had the highest 7.62 mg AE (atropine equivalent)/g of alkaloid. GC–MS analysis of acetone extract identified 15 compounds and the majority of them were terpenoids, and 9,19-cyclo-25,26-epoxyergostan-3-ol,4,4,14-trimethyl-, acetate was the major compound among all terpenoids. Both acetone and methanol extracts showed excellent antioxidant activity as assessed by DPPH, total antioxidant activity, and FRAP assays. This experimental evidence suggests that G. indica resin is an excellent source of bioactive compounds and can be explored for its medicinal applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

All the data obtained during this study are included in this article.

References

  1. Langenheim, J. H. (2003). Plant resins: Chemistry, evolution, ecology and ethnobotany. Timber press.

    Google Scholar 

  2. Murthy, H. N. (2021). Chemical constituents and applications of gums, resins, and latexes of plant origin. In H. N. Murthy (Ed.), Gums, resins and latexes of plant origin. Reference series in phytochemistry (pp. 1–21). Springer. https://doi.org/10.1007/978-3-030-76523-1_1-1

  3. POWO (2022) Plants of the world online. Kew: Royal Botanic Gardens. https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:19345-1. Accessed on 10 October 2022.

  4. Murthy, H. N., & Yadav, G. G. (2021). Chemistry and biological activities of Garcinia resin. In H. N. Murthy (Ed.), Gums, resins, and latexes of plant origin. Reference series in phytochemistry (pp. 479–515). Springer. https://doi.org/10.1007/978-3-030-76523-1_24-1

  5. Dachriyanus, Asjar, N. S., & Susanti, M. (2017). Determination of rubraxanthone in the latex of Asam Kandis (Garcinia cowa Roxb) by reverse phase high performance liquid chromatography. Pharmacognosy Journal, 9, 288–291. https://doi.org/10.5530/pj.2017.2.50

    Article  CAS  Google Scholar 

  6. Khare, K. P. (2007). Indian medicinal plants: an illustrated dictionary. Springer New York. https://doi.org/10.1007/978-0-387-70638-2

  7. Murthy, H. N., Dandin, V. S., Dalawai, D., Park, S. Y., & Paek, K. Y. (2019). Bioactive compounds from Garcinia fruits of high economic value for food and health. In J. M. Mérillon & K. Ramawat (Eds.), Bioactive molecules in food. Reference series in phytochemistry (pp 1643–1670). Springer. https://doi.org/10.1007/978-3-319-78030-6_65

  8. Baliga, M. S., Bhat, H. P., Pai, R. J., Boloor, R., & Palatty, P. L. (2011). The chemistry and medicinal uses of the underutilized Indian fruit tree Garcinia indica Choisy (kokum): A review. Food Research International, 44, 1790–1799. https://doi.org/10.1016/j.foodres.2011.01.064

    Article  CAS  Google Scholar 

  9. Aral, S., & Rameshkumar, K. B. (2016). Gamboge - the bark exudate from Garcinia species. In K. B. Rameshkumar, (Ed.), Diversity of Garcinia species in the Western Ghats: phytochemical perspective (pp 162–169). Jawaharlal Nehru Tropical Botanic Garden and Research Institute.

  10. Harborne, J. B. (1998). Phytochemical methods – a guide to modern techniques of plant analysis. Chapman and Hall.

    Google Scholar 

  11. Murthy, H. N., Dewir, Y. H., Dalawai, D., & Al-Suhaibani, N. (2022). Comparative physicochemical analysis of seed oils of wild cucumber (Cucumis sativus var. hardwickii (Royle) Alef.), cucumber (Cucumis sativus L. var. sativus), and gherkin (Cucumis anguria L.). South African Journal of Botany, 145, 186–191. https://doi.org/10.1016/j.sajb.2021.06.004

    Article  CAS  Google Scholar 

  12. Pękal, A., & Pyrzynska, K. (2014). Evaluation of aluminium complexation reaction for flavonoid content assay. Food Analytical Methods, 7, 1776–1782. https://doi.org/10.1007/s12161-014-9814-x

    Article  Google Scholar 

  13. Shamsa, F., Monsef, H., Ghamooshi, R., & Verdian-rizi, M. (2008). Spectrophotometric determination of total alkaloids in some Iranian medicinal plants. Thai Journal of Pharmaceutical Sciences, 32, 17–20.

    CAS  Google Scholar 

  14. Yadav, G. G., Murthy, H. N., & Dewir, Y. H. (2022). Nutritional composition and in vitro antioxidant activities of seed kernel and seed oil of Balanites roxburghii: An underutilized species. Horticulturae, 8, 798. https://doi.org/10.3390/horticulturae8090798

    Article  Google Scholar 

  15. Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Analytical Biochemistry, 269, 337–341. https://doi.org/10.1006/abio.1999.4019

    Article  CAS  PubMed  Google Scholar 

  16. Benzie, I. F. F., & Strain, J. J. (1999). Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods in Enzymology, 299, 15–27. https://doi.org/10.1016/S0076-6879(99)99005-5

    Article  CAS  PubMed  Google Scholar 

  17. Molole, G. J., Gure, A., & Abdissa, N. (2022). Determination of total phenolic content and antioxidant activity of Commiphora mollis Oliv. Engl resin BMC Chemistry, 16, 48. https://doi.org/10.1186/s13065-022-00841-x

  18. Murthy, H. N., Joseph, K. S., Payamalle, S., Dalawai, D., & Ganapumane, V. (2017). Chemical composition, larvicidal and antioxidant activities of latex from Garcinia morella (Gaertn.) Desr. Journal of Parasitic Diseases, 41, 666–670. https://doi.org/10.1007/s12639-016-0863-5

    Article  PubMed  Google Scholar 

  19. Dorly, A., Tjitrosemito, S., Poerwanto, R., & Juliarni. (2008). Secretory duct structure and phytochemistry compounds of yellow latex in mangosteen fruit. Hayati Journal of Biosciences, 15, 99–104. https://doi.org/10.4308/hjb.15.3.99

    Article  Google Scholar 

  20. Beale, D. J., Pinu, F. R., Kouremenos, K. A., Poojary, M. M., Narayana, V. K., Boughton, B. A., Kanojia, K., Dayalan, S., Jones, O. A. H., & Dias, D. A. (2018). Review of recent developments in GC–MS approaches to metabolomics-based research. Metabolomics, 14, 152. https://doi.org/10.1007/s11306-018-1449-2

    Article  CAS  PubMed  Google Scholar 

  21. Li, R., Narita, R., Ouda, R., Kimura, C., Nishimura, H., Yatagai, M., Fujita, T., & Watanabe, T. (2018). Structure-dependent antiviral activity of catechol derivatives in pyroligneous acid against the encephalomyocarditis virus. RSC Advances, 8, 35888–35896. https://doi.org/10.1039/C8RA07096B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kocaçalışkan, I., Talan, I., & Terzi, I. (2006). Antimicrobial activity of catechol and pyrogallol as allelochemicals. Zeitschrift für Naturforschung C, 61, 639–642. https://doi.org/10.1515/znc-2006-9-1004

    Article  Google Scholar 

  23. Francomano, F., Caruso, A., Barbarossa, A., Fazio, A., la Torre, C., Ceramella, J., Mallamaci, R., Saturnino, C., Iacopetta, D., & Sinicropi, M. S. (2019). β-Caryophyllene: A sesquiterpene with countless biological properties. Applied Sciences, 9, 5420. https://doi.org/10.3390/app9245420

    Article  CAS  Google Scholar 

  24. Dahham, S. S., Tabana, Y. M., Iqbal, M. A., Ahamed, M. B. K., Ezzat, M. O., Majid, A. S. A., & Majid, A. M. S. A. (2015). The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-caryophyllene from the essential oil of Aquilaria crassna. Molecules, 20, 11808–11829. https://doi.org/10.3390/molecules200711808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Türkez, H., Çelik, K., & Toğar, B. (2014). Effects of copaene, a tricyclic sesquiterpene, on human lymphocytes cells in vitro. Cytotechnology, 66, 597–603. https://doi.org/10.1007/s10616-013-9611-1

    Article  CAS  PubMed  Google Scholar 

  26. Larson, R. A. (1988). The antioxidants of higher plants. Phytochemistry, 27, 969–978. https://doi.org/10.1016/0031-9422(88)80254-1

    Article  CAS  Google Scholar 

  27. Christodouleas, D., Papadopoulos, K., & Calokerinos, A. C. (2011). Determination of total antioxidant activity of edible oils as well as their aqueous and organic extracts by chemiluminescence. Food Analytical Methods, 4, 475–484. https://doi.org/10.1007/s12161-010-9189-6

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to University Scientific and Instruments Centre (USIC), Karnatak University, Dharwad, for giving the instrument facility and DST & SAIF, IIT Madras, Chennai, for GC-MS analysis. Hosakatte Niranjana Murthy is thankful for the ‘Brain Pool (BP)’ program Grant No. 2022H1D3A2A02056665.

Author information

Authors and Affiliations

Authors

Contributions

HNM: conceptualization, methodology. GGY, SSK, and SM: investigation. All the authors together prepared the original draft, and read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Hosakatte Niranjana Murthy.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murthy, H.N., Yadav, G.G., Kadapatti, S.S. et al. Phytochemical Analysis, GC–MS Identification of Bioactive Compounds, and In Vitro Antioxidant Activities of Resin of Garcinia indica (Thouars) Choisy. Appl Biochem Biotechnol 195, 4570–4582 (2023). https://doi.org/10.1007/s12010-023-04343-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04343-x

Keywords

Navigation