Skip to main content

Advertisement

Log in

Gene Expression Study of Host and Mycobacterium tuberculosis Interactions in the Manifestation of Acute Tuberculosis

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Mycobacterium tuberculosis (M.tb) could induce type IV hypersensitivity. The chemotaxis of the leukocytes toward the site of infection and producing matrix metalloproteinases (MMPs) are key factors in the immune pathogenesis of tuberculosis (TB). Mononuclear cells were isolated from bronchoalveolar lavage (BAL) specimens, and the target from genomic DNA was used for qPCR TB diagnosis and cDNA for specific RT-qPCR gene expression. The subjects were then classified into TB+ and TB groups, and the expression levels of CFP-10, ESAT-6, CCR1, CCR12 and MMP3,9 were evaluated. The mean level of CCR1 expression in TB+ and TB patients’ BAL was 1.71 ± 0.78 and 0.5 ± 0.22, respectively, which was statistically different (p = 0.01). The CCR2 level, in TB+ (2.07 ± 1.4), was higher than in TB patients (1.42 ± 0.89, p = 0.01). The MMP9 expression in TB+ was 2.56 ± 0.68, also higher than in TB patients (1.13 ± 0.35), while MMP3 was lower in TB+ (0.22 ± 0.09) than in TB (0.64 ± 0.230, p = 0.05). The CCR2/CCR1 and MMP3/MMP9 balance in TB+ were reduced, compared to the TB. The CFP-10 and ESAT-6 were highly expressed in TB+ patients. The CFP-10 expression had a strong negative correlation with albumin (r =  − 0.93, p = 0.001), and a negative correlation with neutrophil (r =  − 0.444, p = 0.1 with 90% CI). The MMP-9 expression showed a positive correlation with WBC count (r = 0.61, p = 0.02), in TB+, and had a negative correlation with BMI (r = 0.59, p = 0.02) in TB. The M.tb CFP-10 might be implicated in lowering CCR2 and MMP3 expression in favour of M.tb dissemination. Moreover, the balance of CCR2/CCR1 and MMP3/MMP9 can be used as prognostic factors in the severity of TB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this manuscript and are available from the corresponding author upon reasonable request.

Abbreviations

APCs:

Antigen-presenting cells

BAL:

Bronchoalveolar lavage

CCR1:

C-C chemokine receptor type 1

CCR2:

C-C chemokine receptor type 1

CFP-10:

Culture filtrate protein 10 kDa

ESAT-6:

Early secretory antigenic target 6 kDa

M.tb :

Mycobacterium tuberculosis

MMP:

Matrix metalloproteinases

PBMCs:

Peripheral blood mononuclear cells

qPCR:

Real-time PCR

RT-qPCR:

Reverse transcription qPCR

TB:

Tuberculosis

References

  1. Sulis, G., Roggi, A., Matteelli, A., & Raviglione, M. C. (2014). Tuberculosis: epidemiology and control. Mediterranean Journal of Hematology and Infectious Diseases, 6(1), e2014070. https://doi.org/10.4084/mjhid.2014.070

    Article  PubMed  PubMed Central  Google Scholar 

  2. Boggiano, C., Eichelberg, K., Ramachandra, L., Shea, J., Ramakrishnan, L., Behar, S., Ernst, J. D., Porcelli, S. A., Maeurer, M., & Kornfeld, H. (2017). The impact of Mycobacterium tuberculosis Immune evasion on protective immunity: Implications for TB vaccine design—meeting report. Vaccine, 35(27), 3433–3440. https://doi.org/10.1016/j.vaccine.2017.04.007

    Article  PubMed  PubMed Central  Google Scholar 

  3. Singh, A., Prasad, R., Balasubramanian, V., & Gupta, N. (2020). Drug-resistant tuberculosis and HIV infection: Current perspectives. HIV AIDS (Auckl). 12, 9–31. https://doi.org/10.2147/HIV.S193059

  4. Li, W., Deng, G., Li, M., Zeng, J., Zhao, L., Liu, X., & Wang, Y. (2014). A recombinant adenovirus expressing CFP10, ESAT6, Ag85A and Ag85B of Mycobacterium tuberculosis elicits strong antigen-specific immune responses in mice. Molecular Immunology, 62(1), 86–95. https://doi.org/10.1016/j.molimm.2014.06.007

    Article  CAS  PubMed  Google Scholar 

  5. Zhai, W., Wu, F., Zhang, Y., Fu, Y., & Liu, Z. (2019). The immune escape mechanisms of Mycobacterium tuberculosis. International Journal of Molecular Sciences, 20(2), 340. https://doi.org/10.3390/ijms20020340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Monin, L., & Khader, S. A. (2014). Chemokines in tuberculosis: The good, the bad and the ugly. Seminars in Immunology, 26(6), 552–558. https://doi.org/10.1016/j.smim.2014.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Domingo-Gonzalez, R., Prince, O., Cooper, A., & Khader, S. A. (2016). Cytokines and chemokines in Mycobacterium tuberculosis infection. Microbiol Spectr 4(5):10.1128/microbiolspec.TBTB2-0018-2016. https://doi.org/10.1128/microbiolspec.TBTB2-0018-2016

  8. Samstein, M., Schreiber, H. A., Leiner, I. M., Susac, B., Glickman, M. S., & Pamer, E. G. (2013). Essential yet limited role for CCR2+ inflammatory monocytes during Mycobacterium tuberculosis-specific T cell priming. Elife, 2, e01086. https://doi.org/10.7554/eLife.01086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tiwari, S., Casey, R., Goulding, C. W., Hingley-Wilson, S., Jacobs, W. R. Jr. (2019). Infect and inject: How Mycobacterium tuberculosis exploits its major virulence-associated type VII secretion system, ESX-1. Microbiology Spectrum, 7(3), 10.1128/microbiolspec.BAI-0024-2019. https://doi.org/10.1128/microbiolspec.BAI-0024-2019.

  10. Abebe, F., Belay, M., Legesse, M., Mihret, A., & Franken, K. S. (2017). Association of ESAT-6/CFP-10-induced IFN-γ, TNF-α and IL-10 with clinical tuberculosis: Evidence from cohorts of pulmonary tuberculosis patients, household contacts and community controls in an endemic setting. Clinical and Experimental Immunology, 189(2), 241–249. https://doi.org/10.1111/cei.12972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brew, K., Dinakarpandian, D., & Nagase, H. (2000). Tissue inhibitors of metalloproteinases: Evolution, structure and function. Biochimica et Biophysica Acta, 1477(1–2), 267–283. https://doi.org/10.1016/s0167-4838(99)00279-4

    Article  CAS  PubMed  Google Scholar 

  12. Ong, C. W., Elkington, P. T., & Friedland, J. S. (2014). Tuberculosis, pulmonary cavitation, and matrix metalloproteinases. American Journal of Respiratory and Critical Care Medicine, 190(1), 9–18. https://doi.org/10.1164/rccm.201311-2106PP

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Quiding-Jarbrink, M., Smith, D. A., & Bancroft, G. J. (2001). Production of matrix metalloproteinases in response to mycobacterial infection. Infection and Immunity, 69(9), 5661–5670. https://doi.org/10.1128/iai.69.9.5661-5670.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rivera-Marrero, C. A., Schuyler, W., Roser, S., Ritzenthaler, J. D., Newburn, S. A., & Roman, J. (2002). M. tuberculosis induction of matrix metalloproteinase-9: the role of mannose and receptor-mediated mechanisms. American Journal of Physiology Lung Cellular and Molecular Physiology, 282(3), L546-555. https://doi.org/10.1152/ajplung.00175.2001

    Article  CAS  PubMed  Google Scholar 

  15. Ragno, S., Romano, M., Howell, S., Pappin, D. J., Jenner, P. J., & Colston, M. J. (2001). Changes in gene expression in macrophages infected with Mycobacterium tuberculosis: A combined transcriptomic and proteomic approach. Immunology, 104(1), 99–108. https://doi.org/10.1046/j.0019-2805.2001.01274.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Torrado, E., Fountain, J. J., Liao, M., Tighe, M., Reiley, W. W., Lai, R. P., Meintjes, G., Pearl, J. E., Chen, X., Zak, D. E., Thompson, E. G., Aderem, A., Ghilardi, N., Solache, A., McKinstry, K. K., Strutt, T. M., Wilkinson, R. J., Swain, S. L., & Cooper, A. M. (2015). Interleukin 27R regulates CD4+ T cell phenotype and impacts protective immunity during Mycobacterium tuberculosis infection. Journal of Experimental Medicine, 212(9), 1449–1463. https://doi.org/10.1084/jem.20141520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Riahi, F., Derakhshan, M., Mosavat, A., Soleimanpour, S., & Rezaee, S. A. (2015). Evaluation of point mutation detection in Mycobacterium tuberculosis with isoniazid resistance using real-time PCR and TaqMan probe assay. Applied Biochemistry and Biotechnology, 175(5), 2447–2455. https://doi.org/10.1007/s12010-014-1442-9

    Article  CAS  PubMed  Google Scholar 

  18. Hunter, RL. (2020) The pathogenesis of tuberculosis—the Koch phenomenon reinstated. Pathogens, 9(10). https://doi.org/10.3390/pathogens9100813

  19. Kumar, R., Singh, P., Kolloli, A., Shi, L., Bushkin, Y., Tyagi, S., & Subbian, S. (2019). Immunometabolism of phagocytes during Mycobacterium tuberculosis infection. Frontiers in Molecular Biosciences, 6, 105. https://doi.org/10.3389/fmolb.2019.00105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Slight, S. R., & Khader, S. A. (2013). Chemokines shape the immune responses to tuberculosis. Cytokine & Growth Factor Reviews, 24(2), 105–113. https://doi.org/10.1016/j.cytogfr.2012.10.002

    Article  CAS  Google Scholar 

  21. Pokkali, S., Das, S. D., & L, R. (2008). Expression of CXC and CC type of chemokines and its receptors in tuberculous and non-tuberculous effusions. Cytokine, 41(3), 307–314. https://doi.org/10.1016/j.cyto.2007.12.009

    Article  CAS  PubMed  Google Scholar 

  22. Sadek, M. I., Sada, E., Toossi, Z., Schwander, S. K., & Rich, E. A. (1998). Chemokines induced by infection of mononuclear phagocytes with mycobacteria and present in lung alveoli during active pulmonary tuberculosis. American Journal of Respiratory Cell and Molecular Biology, 19(3), 513–521. https://doi.org/10.1165/ajrcmb.19.3.2815

    Article  CAS  PubMed  Google Scholar 

  23. Loetscher, P., Seitz, M., Baggiolini, M., & Moser, B. (1996). Interleukin-2 regulates CC chemokine receptor expression and chemotactic responsiveness in T lymphocytes. Journal of Experimental Medicine, 184(2), 569–577.

    Article  CAS  PubMed  Google Scholar 

  24. Romero, I. A., Prevost, M. C., Perret, E., Adamson, P., Greenwood, J., Couraud, P. O., & Ozden, S. (2000). Interactions between brain endothelial cells and human T-cell leukaemia virus type 1-infected lymphocytes: Mechanisms of viral entry into the central nervous system. Journal of Virology, 74(13), 6021–6030. https://doi.org/10.1128/jvi.74.13.6021-6030.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang, C. (2008). The role of inflammatory cytokines in endothelial dysfunction. Basic Research in Cardiology, 103(5), 398–406. https://doi.org/10.1007/s00395-008-0733-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Abebe, F., Holm-Hansen, C., Wiker, H. G., & Bjune, G. (2007). Progress in serodiagnosis of Mycobacterium tuberculosis infection. Scandinavian Journal of Immunology, 66(2–3), 176–191. https://doi.org/10.1111/j.1365-3083.2007.01978.x

    Article  CAS  PubMed  Google Scholar 

  27. Scott, H. M., & Flynn, J. L. (2002). Mycobacterium tuberculosis in chemokine receptor 2-deficient mice: Influence of dose on disease progression. Infection and Immunity, 70(11), 5946–5954. https://doi.org/10.1128/iai.70.11.5946-5954.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lyadova, I. V., & Panteleev, A. V. (2015). Th1 and Th17 Cells in tuberculosis: protection, pathology, and biomarkers. Mediators of Inflammation, 2015, 854507. https://doi.org/10.1155/2015/854507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dwivedi, V. P., Bhattacharya, D., Chatterjee, S., Prasad, D. V., Chattopadhyay, D., Van Kaer, L., Bishai, W. R., & Das, G. (2012). Mycobacterium tuberculosis directs T helper 2 cell differentiation by inducing interleukin-1β production in dendritic cells. Journal of Biological Chemistry, 287(40), 33656–33663. https://doi.org/10.1074/jbc.M112.375154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Natarajan, K., Latchumanan, V. K., Singh, B., Singh, S., & Sharma, P. (2003). Down-regulation of T helper 1 responses to mycobacterial antigens due to maturation of dendritic cells by 10-kDa mycobacterium tuberculosis secretory antigen. Journal of Infectious Diseases, 187(6), 914–928. https://doi.org/10.1086/368173

    Article  CAS  PubMed  Google Scholar 

  31. Trajkovic, V., Natarajan, K., & Sharma, P. (2004). Immunomodulatory action of mycobacterial secretory proteins. Microbes and Infection, 6(5), 513–519. https://doi.org/10.1016/j.micinf.2003.12.015

    Article  CAS  PubMed  Google Scholar 

  32. Muefong, C. N., & Sutherland, J. S. (2020). Neutrophils in tuberculosis-associated inflammation and lung pathology. Frontiers in Immunology, 11, 962. https://doi.org/10.3389/fimmu.2020.00962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hilda, J. N., Das, S., Tripathy, S. P., & Hanna, L. E. (2020). Role of neutrophils in tuberculosis: A bird’s eye view. Innate Immunity, 26(4), 240–247. https://doi.org/10.1177/1753425919881176

    Article  CAS  PubMed  Google Scholar 

  34. Sharebiani, H., Hajimiri, S., Abbasnia, S., Soleimanpour, S., Hashem Asnaashari, A. M., Valizadeh, N., Derakhshan, M., Pilpa, R., Firouzeh, A., Ghazvini, K., AmelJamehdar, S., & Rezaee, S. A. (2021). Game theory applications in host-microbe interactions toward disease manifestation: Mycobacterium tuberculosis infection as an example. Iranian Journal of Basic Medical Sciences, 24(10), 1324–1335. https://doi.org/10.22038/ijbms.2021.55471.12410

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sharebiani, H., Abbasnia, S., Soleimanpour, S., & Rezaee, S. A. R. (2020). Host-microbe interactions in manifestation of tuberculosis: A system biology study in implicated compartments. bioRxiv 2020.12.06.413617. https://doi.org/10.1101/2020.12.06.413617

Download references

Funding

This study was subjected to an MSc thesis in Medical Microbiology and financially supported by the Vice-Chancellor for Research and Technology, Mashhad University of Medical Sciences, Mashhad, Iran, under grants MUMS. 930690 and MUMS. 941165.

Author information

Authors and Affiliations

Authors

Contributions

SA, SH and FM collected the samples and performed the experiments. HA, as a pulmonologist, monitored the patients and took the BAL. NA, SMJ and AM compiled the data and prepared the draft. MD and SAJ were the co-supervisors. KG and SAR supervised the study. SAR planned the study, did the statistics and revised the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Seyed Abdolrahim Rezaee.

Ethics declarations

Research Involving Human Participants and Informed consent

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. This study was reviewed, approved and supervised by the Biomedical Research Ethics Committee of the Mashhad University of Medical Sciences, Mashhad, Iran (IR.MUMS.REC.930690 and IR.MUMS.REC. 941165), and written informed consent forms were obtained and signed by all participants.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasnia, S., Hajimiri, S., Jafari Rad, M. et al. Gene Expression Study of Host and Mycobacterium tuberculosis Interactions in the Manifestation of Acute Tuberculosis. Appl Biochem Biotechnol 195, 3641–3652 (2023). https://doi.org/10.1007/s12010-023-04329-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04329-9

Keywords

Navigation