Skip to main content
Log in

Endophytic Fungus of Achyrocline satureioides: Molecular Identification, Chemical Characterization, and Cytotoxic Evaluation of its Metabolites in Human Melanoma cell line

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Endophytic fungi are important sources of anticancer compounds. An endophytic fungus was isolated from the medicinal plant Achyrocline satureioides, and molecularly identified as Biscogniauxia sp. (family Xylariaceae) based on partial nucleotide sequences of the internal transcribed spacer genomic region (GenBank Accession No. ON257911). The chemical characterization and cytotoxic properties of secondary metabolites produced by Biscogniauxia sp. were evaluated in a human melanoma cell line (A375). The fungus was grown in potato-dextrose liquid medium for 25 days, and the extracted compounds were subjected to solid-phase fractionation to obtain the purified FDCM fraction, for which the metabolites were elucidated via ultra-performance chromatography coupled to a mass spectrometer. In the present study, 17 secondary metabolites of Biscogniauxia sp., including nine polyketide derivatives, five terpenoids, and three isocoumarins, were putatively identified. This is the first study to report of the ability of Biscogniauxia sp. in the production of isocoumarin orthosporin; the terpenoids nigriterpene A and 10-xylariterpenoid; the polyketide derivatives daldinin C, 7’dechloro-5’-hydroxygriseofulvin, daldinone D, Sch-642305, curtachalasin A, cytochalasin E, epoxycytochalasins Z8, Z8 isomer, and Z17. Furthermore, this study has reported the biosynthesis of Sch-642305 by a Xylariaceae fungus for the first time. FDCM significantly reduced the viability and proliferation of human melanoma cells at half-maximal inhibitory concentrations ​​of 10.34 and 6.89 µg/mL, respectively, and induced late apoptosis/necrosis and cell cycle arrest in G2/M phase after 72 h of treatment. Given its ability to produce unique metabolites with promising cytotoxic effects, Biscogniauxia sp. of A. satureioides may be a reservoir of compounds with important therapeutic applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tyagi, G., Kapoor, N., Chandra, G., & Gambhir, L. (2021). Cure lies in nature: medicinal plants and endophytic fungi in curbing cancer. 3 Biotech, 11, 1–24.

    Article  Google Scholar 

  2. Carr, S., Smith, C., & Wernberg, J. (2019). Epidemiology and risk factors of Melanoma. Surgical Clinics of North America. Surg Clin, 100, 1–12.

    Google Scholar 

  3. Patel, M., Eckburg, A., Gantiwala, S., Hart, Z., Dein, J., Lam, K., & Puri, N. (2021). Resistance to molecularly targeted Therapies in Melanoma. Cancers, 13, 1115–1140.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Gupta, A., Gomes, F., & Lorigan, P. (2017). The role for chemotherapy in the modern management of melanoma. Melanoma Manag, 4, 125–136.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Jia, M., Chen, L., Xin, H., Zheng, C., Rahman, K., Han, T., & Qin, L. (2016). A friendly relationship between endophytic fungi and medicinal plants: a systematic review. Frontiers In Microbiology, 7, 906–920.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Uzma, F., Mohan, C. D., Hashem, A., Konappa, N. M., Rangappa, S., Kamath, P. V., Singh, B. P., Mudili, V., Gupta, V. K., Siddaiah, C. N., Chowdappa, S., Alqarawi, A., & Allah, E. (2018). Endophytic fungi—alternative sources of cytotoxic compounds: a review. Frontiers In Pharmacology, 9, 309–346.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Gonçalves, G., Ferreira, M. I., & Ming, L. C. (2018). Achyrocline satureioides (first ed.). Dordrecht: Springer.

    Google Scholar 

  8. Caruso, G., Abdelhamid, M. T., Kalisz, A., & Sekara, A. (2020). Linking endophytic fungi to medicinal plants therapeutic activity. A case study on Asteraceae. Agriculture, 10, 286–309.

    Article  CAS  Google Scholar 

  9. Pedra, N. S., Galdino, K., Da Silva, D., Ramos, P., Bona, N., Soares, M., Azambuja, J., Canuto, K., De Brito, E., Ribeiro, P., Souza, A., Cunico, W., Stefanello, F. M., Spanevello, R. M., & Braganhol, E. (2018). Endophytic Fungus isolated from Achyrocline satureioides exhibits selective Antiglioma Activity—The role of Sch-642305. Frontiers In Oncology, 8, 476–496.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Araújo, W. L., Lima, A. O. S., Azevedo, J. L., Marcon, J., Kuklinskysobral, J., & Lacava, P. T. (2002). Manual: Isolamento de microrganismos endofíticos.Piracicaba:USP.86.

  11. Doyle, J. J., & Doyle, J. L. (1990). Isolation of plant DNA from fresh tissue. Focus, 12, 39–40.

    Google Scholar 

  12. Altschul, S. F. (2016). Basic Local Alignment Search Tool. Journal Of Molecular Biology, 215, 403–410.

    Article  Google Scholar 

  13. Edgar, R. C. (2004). MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform, 5, 1–19.

    Article  Google Scholar 

  14. Kumar, S., Stecher, G., & Tamura, K. (2015). MEGA7: Molecular Evolutionary Genetics Analysis version 7. Molecular Biology And Evolution, 33, 1870–1874.

    Article  Google Scholar 

  15. Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Gateway Computing environments workshop (GCE), New Orleans (pp. 1–8). LA.

  16. Ronquist, F., Teslenko, M., Van der Mark, P., Ayres, D. L., Darling, A., Hohna, S., Larget, B., Liu, L., Suchard, M. A., & Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large Model Space. Systematic Biology, 61, 539–542.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Posada, D., & Buckley, T. (2004). Model selection and Model Averaging in Phylogenetics: advantages of Akaike Information Criterion and bayesian approaches over likelihood ratio tests. Systematic Biology, 53, 793–808.

    Article  PubMed  Google Scholar 

  18. Rannala, B., & Yang, Z. H. (1996). Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. Journal Of Molecular Evolution, 43, 304–311.

    Article  CAS  PubMed  Google Scholar 

  19. Sobreira, A. C., Pinto, F., Florêncio, K., Wilke, D., Staats, C. C., Streit, R., Freire, F., Pessoa, O., Silva, A., & Canuto, K. (2018). Endophytic fungus pseudofusicoccum stromaticum produces cyclopeptides and plant-related bioactive rotenoids. Rsc Advances, 8, 35575–35586.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal Of Immunological Methods, 65, 55–63.

    Article  CAS  PubMed  Google Scholar 

  21. Azambuja, J. H., Gelsleichter, N. E., Beckenkamp, L. R., Iser, I. C., Fernandes, M. C., Figueiró, F., Battastini, A. M. O., Scholl, J. N., de Oliveira, F. H., Spanevello, R. M., Sévigny, J., Wink, M. R., Stefani, M. A., Teixeira, H. F., & Braganhol, E. (2019). CD73 downregulation decreases in vitro and in vivo glioblastoma growth. Molecular Neurobiology, 56, 3260–3279.

    Article  CAS  PubMed  Google Scholar 

  22. Rajivgandhi, G., Vijayan, R., Kannan, M., Santhanakrishnan, M., & Manoharan, N. (2016). Molecular characterization and antibacterial effect of endophytic actinomycetes Nocardiopsis sp. GRG1 (KT235640) from brown algae against MDR strains of uropathogens. Bioact Mater, 1, 140–150.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Shao, H., Qin, X., Dong, Z., Zhang, H., & Liu, J. (2008). Induced daldinin A, B, C with a new skeleton from cultures of the ascomycete Daldinia concentrica. Journal Of Antibiotics, 61, 115–119.

    Article  CAS  PubMed  Google Scholar 

  24. Paguigan, N., Al-Huniti, M., Raja, H., Czarnecki, A., Burdette, J., González-Medina, M., Medina-Franco, J., Polyak, S., Pearce, C., Croatt, M., & Oberlies, N. (2017). Chemoselective fluorination and chemoinformatic analysis of griseofulvin: natural vs fluorinated fungal metabolites. Bioorganic & Medicinal Chemistry, 25, 5238–5246.

    Article  CAS  Google Scholar 

  25. Niu, S., Liu, Q., Xia, J. M., Xie, C. L., Luo, Z., Shao, Z., Liu, G., & Yang, X. W. (2018). Polyketides from the deep-sea-derived fungus graphostroma sp. MCCC 3A00421 showed potent antifood allergic activities. Journal Of Agriculture And Food Chemistry, 66, 1369–1376.

    Article  CAS  Google Scholar 

  26. Chang, J., Hsiao, G., Lin, R., Kuo, Y., Ju, Y., & Lee, T. (2017). Bioactive constituents from the termite nest-derived medicinal fungus Xylaria nigripes. Journal Of Natural Products, 80, 38–44.

    Article  CAS  PubMed  Google Scholar 

  27. Niu, S., Xie, C. L., Zhong, T., Xu, W., Luo, Z. H., Shao, Z., & Yang, X. (2017). Sesquiterpenes from a deep-sea-derived fungus graphostroma sp. MCCC 3A00421. Tetrahedron, 73, 7267–7273.

    Article  CAS  Google Scholar 

  28. Zhao, H., Chen, G. D., Zou, J., He, R. R., Qin, S. Y., Hu, D., Li, G. Q., Guo, L. D., & Yao, X. (2017). Dimericbiscognienyne A: a meroterpenoid dimer from Biscogniauxia sp. with New Skeleton and its activity. Organic Letters, 19, 38–41.

    Article  CAS  PubMed  Google Scholar 

  29. Raja, H., Kaur, A., El-Elimat, T., Figueroa, M., Kumar, R., Deep, G., Faeth, S. H., Cech, N. B., & Oberlies, N. H. (2015). Phylogenetic and chemical diversity of fungal endophytes isolated from Silybum marianum (L) Gaertn.(milk thistle). Mycology 6, 8–27.

  30. Amand, S., Langenfeld, A., Blond, A., Dupont, J., Nay, B., & Prado, S. (2012). Guaiane sesquiterpenes from Biscogniauxia nummularia featuring potent antigerminative activity. Journal Of Natural Products, 75, 798–801.

    Article  CAS  PubMed  Google Scholar 

  31. Rubalcaba, M. L. M., & Fernández, R. E. S. (2017). Secondary metabolites of endophytic Xylaria species with potential applications in medicine and agriculture. World Journal Of Microbiology & Biotechnology, 33, 1–22.

    Google Scholar 

  32. Gu, W., Ge, H. M., Song, Y. C., Ding, H., Zhu, H., Zhao, X. A., & Tan, R. X. (2007). Cytotoxic benzo [j] fluoranthene metabolites from Hypoxylontruncatum IFB-18, an endophyte of Artemisia annua. Journal Of Natural Products, 70, 114–117.

    Article  CAS  PubMed  Google Scholar 

  33. Wang, W. X., Li, Z. H., Feng, T., Li, J., Sun, H., Huang, R., & Liu, J. K. (2018). Curtachalasins A and B, two cytochalasans with a tetracyclic skeleton from the endophytic fungus Xylaria curta E10. Org. Lett. 20, 7758–7761.

  34. Zhang, Q., Xiao, J., Sun, Q. Q., Qin, J. C., Pescitelli, G., & Gao, J. M. (2014). Characterization of cytochalasins from the endophytic Xylaria sp. and their biological functions. Journal Of Agriculture And Food Chemistry, 62, 10962–10969.

    Article  CAS  Google Scholar 

  35. Han, W. B., Zhai, Y. J., Gao, Y., Zhou, H. Y., Xiao, J., Pescitelli, G., & Gao, J. M. (2019). Cytochalasins and an abietane-type diterpenoid with allelopathic activities from the endophytic fungus Xylaria species. J Agricul Food Chem, 67, 3643–3650.

    Article  CAS  Google Scholar 

  36. Rajivgandhi, G., Saravanan, K., Ramachandran, G., Li, J. L., Yin, L., Quero, F., Alharbi, N. S., Kadaikunnan, S., Khaled, J. M., Manoharan, N., & Li, W. J. (2020). Enhanced anti-cancer activity of chitosan loaded Morinda citrifolia essential oil against A549 human lung cancer cells. International Journal Of Biological Macromolecules, 164, 4010–4021.

    Article  CAS  PubMed  Google Scholar 

  37. Cheng, M., Wu, M., Yanai, H., Su, Y. S., Chen, I., Yuan, G., Hsieh, S. Y., & Chen, J. J. (2012). Secondary metabolites from the endophytic fungus Biscogniauxia formosana and their antimycobacterial activity. Phytochemistry Letters, 5, 467–472.

    Article  CAS  Google Scholar 

  38. Carvalho, C. R., Wedge, D. E., Cantrell, C. L., Silva-Hughes, A. F., Pan, Z., Moraes, R. M., Maddox, V. L., & Rosa, L. H. (2016). Molecular phylogeny, diversity, and bioprospecting of endophytic fungi associated with wild ethnomedicinal north american plant Echinacea purpurea (Asteraceae). Chem Biodiver, 13, 918–930.

    Article  CAS  Google Scholar 

  39. Becker, K., & Stadler, M. (2021). Recent progress in biodiversity research on the Xylariales and their secondary metabolism. Journal Of Antibiotics, 74, 1–23.

    Article  CAS  PubMed  Google Scholar 

  40. Daranagama, D. A., Hyde, K. D., Sir, E. B., Thambugala, K. M., Tian, Q., Samarakoon, M. C., McKenzie, E., Jayasiri, S. C., Tibpromma, S., Bhat, J. D., Liu, X., & Stadler, M. (2018). Towards a natural classification and backbone tree for Graphostromataceae, Hypoxylaceae, Lopadostomataceae and Xylariaceae. Fungal Diversity, 88, 1–165.

    Article  Google Scholar 

  41. Chu, M., Mierzwa, R., Xu, L., He, L., Terracciano, J., Patel, M., Gullo, V., Black, T., Zhao, W., Chan, T., & McPhail, A. (2003). Isolation and structure elucidation of Sch 642305, a Novel bacterial DNA primase inhibitor produced by Penicillium verrucosum. Journal Of Natural Products, 66, 1527–1530.

    Article  CAS  PubMed  Google Scholar 

  42. Adelin, E., Servy, C., Cortial, S., Lévaique, H., Martin, M. T., Retailleau, P., Le, G., Bussaban, B., Lumyong, S., & Ouazzani, J. (2011). Isolation, structure elucidation and biological activity of metabolites from Sch-642305-producing endophytic fungus phomopsis sp. CMU-LMA Phytochem, 7, 2406–2412.

    Article  Google Scholar 

  43. Laux, A., Hamman, J., Svitina, H., Wrzesinski, K., & Gouws, C. (2022). In vitro evaluation of the anti-melanoma effects (A375 cell line) of the gel and whole leaf extracts from selected aloe species. J Herb Med, 31, 100539.

    Article  Google Scholar 

  44. Xu, W., & McArthur, G. (2016). Cell cycle regulation and melanoma. Current Oncology Reports, 18, 34.

    Article  PubMed  Google Scholar 

  45. Poon, I., Hulett, M., & Parish, C. (2010). Molecular mechanisms of late apoptotic/necrotic cell clearance. Cell Death And Differentiation, 17, 381–397.

    Article  CAS  PubMed  Google Scholar 

  46. Sergey, Y., & Vladimir, L. G. (2010). Mechanisms of Tumor Cell Necrosis. Curr Pharm Des, 16, 56–68.

    Article  Google Scholar 

  47. Zhang, J., Lou, X., Jin, L., Zhou, R., Liu, S., Xu, N., & Liao, D. J. (2014). Necrosis, and then stress induced necrosis-like cell death, but not apoptosis, should be the preferred cell death mode for chemotherapy: clearance of a few misconceptions. Oncoscience, 1, 407.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Li, W., Ding, L., Wang, N., Xu, J., Zhang, W., Zhang, B., He, S., Wu, B., & Jin, H. (2019). Isolation and characterization of two new metabolites from the sponge-derived fungus aspergillus sp. LS34 by OSMAC approach. Marine Drugs, 17, 283–292.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Wu, B., Wiese, J., Schmaljohann, R., & Imhoff, J. F. (2016). Biscogniauxone, a new isopyrrolonaphthoquinone compound from the fungus biscogniauxia mediterranea isolated from deep-sea sediments. Marine Drugs, 14, 204–213.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Delebassée, S., Mambu, L., Pinault, E., Champavier, Y., Liagre, B., & Millot, M. (2017). Cytochalasin E in the lichen Pleurosticta acetabulum. Anti-proliferative activity against human HT-29 colorectal cancer cells and quantitative variability. Fitoterapia, 121, 146–151.

    Article  PubMed  Google Scholar 

  51. Udagawa, T., Yuan, J., Panigrahy, D., Chang, Y. H., Shah, J., & D’Amato, R. J. (2000). Cytochalasin E, an epoxide containing aspergillus-derived fungal metabolite, inhibits angiogenesis and tumor growth. Journal Of Pharmacology And Experimental Therapeutics, 294, 421–427.

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS), and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brasil; finance code: 001). R.M.S is a recipient of the CNPq fellowship (310472/2021-0).

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the conception and design of this study. Material preparation, data collection, and fungal analysis were performed by Nathalia Pedra, Kirley Canuto, Ana Souza, and Paulo Ribeiro. Material preparation, data collection, and cells analyses were performed by Nathalia Pedra, Natália Bona, Priscila Souza, Roselia Spanevello, and Elizandra Braganhol. The first draft of the manuscript was written by Nathalia Pedra, and all the authors commented on the previous versions of the manuscript. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Nathalia Stark Pedra or Roselia Maria Spanevello.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interest to disclose.

Ethics Approval

This study did not require ethics approval.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

12010_2023_4328_MOESM1_ESM.docx

The phylogenetic relationship based on the ITS sequences of Biscogniauxia sp. is available as Supplemental Information (Fig. S1). The spectra and proposed tandem mass spectrometry (MS/MS) fragmentation mechanisms of compounds 4, 8, 13, 14, 18, 22, 25, 26, and 28 (Fig. S2-S10), and the high resolution mass spectra of the compounds 6, 7, 10, 12, 15, 17, 23 and 27 (Fig. S11-S18) are provided in the Supporting Information.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pedra, N.S., Canuto, K.M., de Queiroz Souza, A.S. et al. Endophytic Fungus of Achyrocline satureioides: Molecular Identification, Chemical Characterization, and Cytotoxic Evaluation of its Metabolites in Human Melanoma cell line. Appl Biochem Biotechnol 195, 4011–4035 (2023). https://doi.org/10.1007/s12010-023-04328-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04328-w

Keywords

Navigation