Skip to main content

Advertisement

Log in

A New Substrate and Nitrogen Source for Traditional Kombucha Beverage: Stevia rebaudiana Leaves

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Recently, the use of different herbal products as carbon sources instead of black and green tea in the preparation of traditional kombucha has been investigated. In this study, functional kombucha was prepared by adding Stevia rebaudiana Bertoni leaves, which have special organoleptic properties, to kombucha medium, and some properties of the beverage were analyzed. Tea blends were determined as 100% green tea (control = C), 75% green tea (GT) + 25% Stevia (ST), 50% GT + 50% ST, and 100% ST. On the 15th day of fermentation, gluconic acid (43.12 ± 0.01 g/L) was detected as dominant organic acid in GT75 + ST25 samples compared to group C (p < 0.05). According to physicochemical parameters that determine the drinkability properties of prepared teas, the best results were in GT25 + ST75 compared to group C (p < 0.05). It proved that the highest activity was in GT25 + ST75 on the 10th day in the groups that applied different antioxidant tests (DPPH, MCA, and CUPRAC). The antimicrobial activities of kombucha at 25, 50, 75, and 100% concentrations of GT and ST reached the highest levels in the GT25 + ST75 group in samples after 10 days of fermentation for all selected microorganisms. The results prove that GT25 + ST75 kombucha is a functional product with high drinkability on the 10th day of fermentation and also more beneficial for health due to the phenolic compounds from both green tea and Stevia. Stevia rebaudiana leaves can be suggested that be used as a new substrate and nitrogen source for kombucha production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Materials

The data used to support the research findings are available from corresponding author.

References

  1. Teoh, A. L., Heard, G., & Cox, J. (2004). Yeast ecology of kombucha fermentation. International Journal of Food Microbiology, 95, 119–126.

    Article  CAS  PubMed  Google Scholar 

  2. Martínez Leal, J., et al. (2018). A review on health benefits of kombucha nutritional compounds and metabolites. CyTA-Journal of Food, 16, 390–399.

    Article  Google Scholar 

  3. Amarasinghe, H., Weerakkody, N. S., & Waisundara, V. Y. (2018). Evaluation of physicochemical properties and antioxidant activities of kombucha “tea fungus” during extended periods of fermentation. Food Science & Nutrition, 6, 659–665.

    Article  CAS  Google Scholar 

  4. Stoner, G. D., & Mukhtar, H. (1995). Polyphenols as cancer chemopreventive agents. Journal of Cellular Biochemistry, 59, 169–180.

    Article  Google Scholar 

  5. Yang, C. S., Maliakal, P., & Meng, X. (2002). Inhibition of carcinogenesis by tea. Annual Review of Pharmacology and Toxicology, 42, 25–54.

    Article  CAS  PubMed  Google Scholar 

  6. Yang, S. C., Prabhu, S., & Landau, J. (2001). Prevention of carcinogenesis by tea polyphenols. Drug Metabolism Reviews, 33, 237–253.

    Article  CAS  PubMed  Google Scholar 

  7. Vázquez-Cabral, B. D., et al. (2014). Chemical and sensory evaluation of a functional beverage obtained from infusions of oak leaves (Quercus resinosa) inoculated with the kombucha consortium under different processing conditions. Nutrafoods, 13, 169–178.

    Article  Google Scholar 

  8. Neffe-Skocińska, K., Sionek, B., Ścibisz, I., & Kołożyn-Krajewska, D. (2017). Acid contents and the effect of fermentation condition of kombucha tea beverages on physicochemical, microbiological and sensory properties. CyTA-Journal of Food, 15, 601–607.

    Article  Google Scholar 

  9. Apak, R., et al. (2006). The cupric ion reducing antioxidant capacity and polyphenolic content of some herbal teas. International Journal of Food Sciences and Nutrition, 57, 292–304.

    Article  CAS  PubMed  Google Scholar 

  10. Cvetkovic, D. D. (2008). Kombucha made from medical herbs-biological activity and fermentation parameters.[Doctoral dissertation].

  11. Velicanski, A. S., et al. (2014). Antioxidant and antibacterial activity of the beverage obtained by fermentation of sweetened lemon balm (Melissa officinalis L.) tea with symbiotic consortium of bacteria and yeasts. Food Technology and Biotechnology, 52, 420–429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vitas, J. S., Malbaša, R. V., Grahovac, J. A., & Lončar, E. S. (2013). The antioxidant activity of kombucha fermented milk products with stinging nettle and winter savory. Chemical Industry and Chemical Engineering Quarterly, 19, 129–139.

    Article  CAS  Google Scholar 

  13. Geuns, J. M. C. (2003). Stevioside. Phytochemistry, 64, 913–921.

    Article  CAS  PubMed  Google Scholar 

  14. Tavarini, S., & Angelini, L. G. (2013). Stevia rebaudiana Bertoni as a source of bioactive compounds: the effect of harvest time, experimental site and crop age on steviol glycoside content and antioxidant properties. Journal of the Science of Food and Agriculture, 93, 2121–2129.

    Article  CAS  PubMed  Google Scholar 

  15. Wölwer-Rieck, U. (2012). The leaves of Stevia rebaudiana (Bertoni), their constituents and the analyses thereof: a review. Journal of Agricultural and Food Chemistry, 60, 886–895.

    Article  PubMed  Google Scholar 

  16. Brand-Williams, W., Cuvelier, M. E., & Berset, C. L. W. T. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28, 25–30.

    Article  CAS  Google Scholar 

  17. Dinis, T. C., Madeira, V. M., & Almeida, L. M. (1994). Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Archives of Biochemistry and Biophysics, 315, 161–169.

    Article  CAS  PubMed  Google Scholar 

  18. Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144–158.

    Article  CAS  Google Scholar 

  19. Sievers, M., et al. (1995). Microbiology and fermentation balance in a kombucha beverage obtained from a tea fungus fermentation. Systematic and Applied Microbiology, 18, 590–594.

    Article  Google Scholar 

  20. Yavari, N., Assadi, M. M., Moghadam, M. B., & Larijani, K. (2011). Optimizing glucuronic acid production using tea fungus on grape juice by response surface methodology. Australian Journal of Basic and Applied Sciences, 5, 1788–1794.

    CAS  Google Scholar 

  21. Ayed, L., & Hamdi, M. (2015). Manufacture of a beverage from cactus pear juice using “tea fungus” fermentation. Annals of Microbiology, 65, 2293–2299.

    Article  CAS  Google Scholar 

  22. Antolak, H. & Kregiel, D. (2015). Bakterie kwasu octowego-taksonomia, ekologia oraz wykorzystanie przemysłowe. Żywność Nauka Technologia Jakość, 22.

  23. Chen, C., & Liu, B. (2000). Changes in major components of tea fungus metabolites during prolonged fermentation. Journal of Applied Microbiology, 89, 834–839.

    Article  CAS  PubMed  Google Scholar 

  24. Sreeramulu, G., Zhu, Y., & Knol, W. (2000). Kombucha fermentation and its antimicrobial activity. Journal of Agricultural and Food Chemistry, 48, 2589–2594.

    Article  CAS  PubMed  Google Scholar 

  25. Tanticharakunsiri, W., Mangmool, S., Wongsariya, K., & Ochaikul, D. (2021). Characteristics and upregulation of antioxidant enzymes of kitchen mint and oolong tea kombucha beverages. Journal of Food Biochemistry, 45, e13574.

    Article  CAS  PubMed  Google Scholar 

  26. Tamer, C., et al. (2021). Evaluation of bioaccessibility and functional properties of kombucha beverages fortified with different medicinal plant extracts. Turkish Journal of Agriculture and Forestry, 45, 13–32.

    CAS  Google Scholar 

  27. Jakubczyk, K., Kałduńska, J., Kochman, J., & Janda, K. (2020). Chemical profile and antioxidant activity of the kombucha beverage derived from white, green, black and red tea. Antioxidants, 9, 447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yıkmış, S., & Tuğgüm, S. (2019). Evaluation of microbiological, physicochemical and sensorial properties of purple basil kombucha beverage. Turkish Journal of Agriculture-Food Science and Technology, 7, 1321–1327.

    Article  Google Scholar 

  29. Belloso-Morales, G., & Hernández-Sánchez, H. (2003). Manufacture of a beverage from cheese whey using a" tea fungus" fermentation. Revista Latinoamericana de Microbiologia, 45, 5.

    PubMed  Google Scholar 

  30. Ayed, L., Ben Abid, S., & Hamdi, M. (2017). Development of a beverage from red grape juice fermented with the kombucha consortium. Annals of Microbiology, 67, 111–121.

    Article  CAS  Google Scholar 

  31. Jayabalan, R., et al. (2014). A review on kombucha tea-microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. Comprehensive Reviews in Food Science and Food Safety, 13, 538–550.

    Article  PubMed  Google Scholar 

  32. Abuduaibifu, A., & Tamer, C. E. (2019). Evaluation of physicochemical and bioaccessibility properties of goji berry kombucha. Journal of Food Processing and Preservation, 43, e14077.

    Article  Google Scholar 

  33. Gaggìa, F., et al. (2018). Kombucha beverage from green, black and rooibos teas: a comparative study looking at microbiology, chemistry and antioxidant activity. Nutrients, 11, 1.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sun, T.-Y., Li, J.-S., & Chen, C. (2015). Effects of blending wheatgrass juice on enhancing phenolic compounds and antioxidant activities of traditional kombucha beverage. Journal of Food and Drug Analysis, 23, 709–718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Watawana, M. I., Jayawardena, N., & Waisundara, V. Y. (2018). Value-added tea (Camellia sinesis) as a functional food using the kombucha ‘tea fungus.’ Chiang Mai Journal of Science, 45, 136–146.

    CAS  Google Scholar 

  36. Bhattacharya, D., et al. (2016). Antibacterial activity of polyphenolic fraction of kombucha against enteric bacterial pathogens. Current Microbiology, 73, 885–896.

    Article  CAS  PubMed  Google Scholar 

  37. Gamboa-Gómez, C. I., et al. (2016). Antioxidant and angiotensin-converting enzyme inhibitory activity of Eucalyptus camaldulensis and Litsea glaucescens infusions fermented with kombucha consortium. Food Technology and Biotechnology, 54, 367.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Jayabalan, R., et al. (2008). Changes in free-radical scavenging ability of kombucha tea during fermentation. Food Chemistry, 109, 227–234.

    Article  CAS  PubMed  Google Scholar 

  39. Battikh, H., Chaieb, K., Bakhrouf, A., & Ammar, E. (2013). Antibacterial and antifungal activities of black and green kombucha teas. Journal of Food Biochemistry, 37, 231–236.

    Article  CAS  Google Scholar 

  40. Chakravorty, S., et al. (2016). Kombucha tea fermentation: microbial and biochemical dynamics. International Journal of Food Microbiology, 220, 63–72.

    Article  CAS  PubMed  Google Scholar 

  41. Jayabalan, R., et al. (2010). Biochemical characteristics of tea fungus produced during kombucha fermentation. Food Science and Biotechnology, 19, 843–847.

    Article  CAS  Google Scholar 

  42. Bhattacharya, S., Gachhui, R., & Sil, P. C. (2013). Effect of kombucha, a fermented black tea in attenuating oxidative stress mediated tissue damage in alloxan induced diabetic rats. Food and Chemical Toxicology, 60, 328–340.

    Article  CAS  PubMed  Google Scholar 

  43. Wang, L.-F., Kim, D.-M., & Lee, C. Y. (2000). Effects of heat processing and storage on flavanols and sensory qualities of green tea beverage. Journal of Aricultural and Food Chemistry, 48, 4227–4232.

    Article  CAS  Google Scholar 

  44. Vohra, B. M., Fazry, S., Sairi, F., & Babul-Airianah, O. (2019). Effects of medium variation and fermentation time on the antioxidant and antimicrobial properties of kombucha. Malaysian Journal of Fundamental and Applied Sciences, 15, 298–302.

    Article  Google Scholar 

  45. Dwiputri, M. C., & Feroniasanti, Y. L. (2019). Effect of fermentation to total titrable acids, flavonoid and antioxidant activity of butterfly pea kombucha. Journal of Physics: Conference Series, 1241, 012014.

    CAS  Google Scholar 

  46. Shahbazi, H., et al. (2018). Effect of medicinal plant type and concentration on physicochemical, antioxidant, antimicrobial, and sensorial properties of kombucha. Food Science & Nutrition, 6, 2568–2577.

    Article  CAS  Google Scholar 

  47. Jayabalan, R., Marimuthu, S., & Swaminathan, K. (2007). Changes in content of organic acids and tea polyphenols during kombucha tea fermentation. Food Chemistry, 102, 392–398.

    Article  CAS  Google Scholar 

  48. Vina, I., Semjonovs, P., Linde, R., & Patetko, A. (2013). Glucuronic acid containing fermented functional beverages produced by natural yeasts and bacteria associations. International Journal of Research and Reviews in Applied, 14, 17–25.

    CAS  Google Scholar 

  49. Yang, Z., et al. (2010). Symbiosis between microorganisms from kombucha and kefir: potential significance to the enhancement of kombucha function. Applied Biochemistry and Biotechnology, 160, 446–455.

    Article  CAS  PubMed  Google Scholar 

  50. Malbasa, R., Loncar, E., & Djuric, M. (2008). Comparison of the products of kombucha fermentation on sucrose and molasses. Food Chemistry, 106, 1039–1045.

    Article  CAS  Google Scholar 

  51. Akarca, G., & Tomar, O. (2020). Kırmızı ve mor sebzelerle hazırlanan kombucha çaylarının kalite özelliklerinin belirlenmesi. Mediterranean Agricultural Sciences, 33, 215–222.

    Article  Google Scholar 

  52. Delik, E., Eroğlu, B., Orhan, Ü., & ÖZTÜRK, B. E. T. (2021). Origanum bilgeri’nin kombu çayının biyoaktivitesi ve mikrobiyolojik profili üzerindeki etkilerinin incelenmesi. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 21, 236–249.

    Google Scholar 

  53. Sözmen, F., et al. (2012). Extraction of the essential oil from endemic Origanum bilgeri PH Davis with two different methods: comparison of the oil composition and antibacterial activity. Chemistry & Biodiversity, 9, 1356–1363.

    Article  Google Scholar 

  54. Köse, E. O., Öngüt, G., & Yanikoglu, A. (2013). Chemical composition and antimicrobial activity of essential oil of endemic Origanum bilgeri PH Davis for Turkey. Journal of Essential Oil Bearing Plants, 16, 233–242.

    Article  Google Scholar 

  55. Cardoso, R. R., et al. (2020). Kombuchas from green and black teas have different phenolic profile, which impacts their antioxidant capacities, antibacterial and antiproliferative activities. Food Research International, 128, 108782.

    Article  CAS  PubMed  Google Scholar 

  56. Tu, C., et al. (2019). Use of kombucha consortium to transform soy whey into a novel functional beverage. Journal of Functional Foods, 52, 81–89.

    Article  CAS  Google Scholar 

  57. Watawana, M. I., Jayawardena, N., Gunawardhana, C. B. & Waisundara, V. Y. (2015). Health, wellness, and safety aspects of the consumption of kombucha. Journal of Chemistry, 2015.

  58. Mani-López, E., García, H., & López-Malo, A. (2012). Organic acids as antimicrobials to control Salmonella in meat and poultry products. Food Research International, 45, 713–721.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The author carried out all the stages of the research himself.

Corresponding author

Correspondence to Mehmet Fuat Gülhan.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gülhan, M.F. A New Substrate and Nitrogen Source for Traditional Kombucha Beverage: Stevia rebaudiana Leaves. Appl Biochem Biotechnol 195, 4096–4115 (2023). https://doi.org/10.1007/s12010-023-04323-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04323-1

Keywords

Navigation