Skip to main content

Advertisement

Log in

An Overview of Collagen-Based Composite Scaffold for Bone Tissue Engineering

  • Review Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Bone regeneration or restoration is a series of well-ordered physiological activities that occur throughout a person’s life, they are continuously being repaired and remodeled. A conventional bone repair procedure, such as autograft and allograft bone transplant, has failed to address bone reconstruction disputes and complexity. On the other hand, Tissue Engineering is a potential therapy option for repairing rather than replacing the damaged tissue. Biomaterials in bone tissue engineering (BTE) help pave the way for damaged tissues as an artificial extracellular matrix, facilitating new tissue growth. Collagen-based biomaterials for repair and replacement have inspired much interest in the hunt for versatile biomaterials compatible with human tissue. It is a major organic component of extracellular matrix in bone and has been employed as scaffolding material in BTE for decades. In this review, we documented the role of collagen in BTE, focusing on collagen type I, its crosslinking capability, collagen-based biomaterials, and fabrication methods. It also considers osteoblast citration a critical process in bone formation, a unique perspective for an old relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Shoulders, M. D., & Raines, R. T. (2009). Collagen structure and stability. Annual Review of Biochemistry, 78, 929–958. https://doi.org/10.1146/annurev.biochem.77.032207.120833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fan, D., Takawale, A., Lee, J., & Kassiri, Z. (2012). Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease. Fibrogenes. Tissue Repair, 5(1), 1–13. https://doi.org/10.1186/1755-1536-5-15

    Article  CAS  Google Scholar 

  3. Ferreira, A. M., Gentile, P., Chiono, V., & Ciardelli, G. (2012). Collagen for bone tissue regeneration. Acta Biomaterialia, 8(9), 3191–3200. https://doi.org/10.1016/j.actbio.2012.06.014

    Article  CAS  PubMed  Google Scholar 

  4. Brinckmann, J. (2005). Collagens at a glance. Topics in Current Chemistry, 247, 1–6. https://doi.org/10.1007/b103817

    Article  CAS  Google Scholar 

  5. de AzevedoGonçalvesMota, R. C., da Silva, E. O., de Lima, F. F., de Menezes, L. R., & Thiele, A. C. S. (2016). 3D printed scaffolds as a new perspective for bone tissue regeneration: Literature review. Materials Sciences and Applications, 07(08), 430–452. https://doi.org/10.4236/msa.2016.78039

    Article  Google Scholar 

  6. Chocholata, P., Kulda, V., & Babuska, V. (2019). Fabrication of scaffolds for bone-tissue regeneration. Materials (Basel), 12(4) https://doi.org/10.3390/ma12040568

  7. Wang, X., et al. (2016). Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials, 83, 127–141. https://doi.org/10.1016/j.biomaterials.2016.01.012

    Article  CAS  PubMed  Google Scholar 

  8. Qu, H. (2019). Biomaterials for bone tissue engineering scaffolds: A review. RSC Advances, 26252–26262. https://doi.org/10.1039/c9ra05214c

  9. Saito, M., & Marumo, K. (2015). Effects of collagen crosslinking on bone material properties in health and disease. Calcified Tissue International, 97(3), 242–261. https://doi.org/10.1007/s00223-015-9985-5

    Article  CAS  PubMed  Google Scholar 

  10. Kular, J., Tickner, J., Chim, S. M., & Xu, J. (2012). An overview of the regulation of bone remodelling at the cellular level. Clinical Biochemistry, 45(12), 863–873. https://doi.org/10.1016/j.clinbiochem.2012.03.021

    Article  CAS  PubMed  Google Scholar 

  11. Ansari, M. (2019). Bone tissue regeneration: Biology, strategies and interface studies. Progress in Biomaterials, 8(4), 223–237. https://doi.org/10.1007/s40204-019-00125-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sikavitsas, V. I., Temenoff, J. S., & Mikos, A. G. (2001). Biomaterials and bone mechanotransduction. Biomaterials, 22(19), 2581–2593. https://doi.org/10.1016/S0142-9612(01)00002-3

    Article  CAS  PubMed  Google Scholar 

  13. Alford, A. I., Kozloff, K. M., & Hankenson, K. D. (2015). Extracellular matrix networks in bone remodeling. International Journal of Biochemistry & Cell Biology, 65, 20–31. https://doi.org/10.1016/j.biocel.2015.05.008

    Article  CAS  Google Scholar 

  14. Wang, W., & Yeung, K. W. K. (2017). Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioactive Materials, 2(4), 224–247. https://doi.org/10.1016/j.bioactmat.2017.05.007

    Article  PubMed  PubMed Central  Google Scholar 

  15. Schindeler, A., McDonald, M. M., Bokko, P., & Little, D. G. (2008). Bone remodeling during fracture repair: The cellular picture. Seminars in Cell & Developmental Biology, 19(5), 459–466. https://doi.org/10.1016/j.semcdb.2008.07.004

    Article  CAS  Google Scholar 

  16. Pajarinen, J., et al. (2019). Mesenchymal stem cell-macrophage crosstalk and bone healing. Biomaterials, 196(2018), 80–89. https://doi.org/10.1016/j.biomaterials.2017.12.025

    Article  CAS  PubMed  Google Scholar 

  17. Naghib, S. M., Ansari, M., Pedram, A., Moztarzadeh, F., Feizpour, A., & Mozafari, M. (2012). Bioactivation of 304 stainless steel surface through 45S5 bioglass coating for biomedical applications. International Journal of Electrochemical Science., 7(4), 2890–2903.

    Article  CAS  Google Scholar 

  18. Campana, V., et al. (2014). Bone substitutes in orthopaedic surgery: From basic science to clinical practice. Journal of Materials Science. Materials in Medicine, 25(10), 2445–2461. https://doi.org/10.1007/s10856-014-5240-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Roddy, E., DeBaun, M. R., Daoud-Gray, A., Yang, Y. P., & Gardner, M. J. (2018). Treatment of critical-sized bone defects: Clinical and tissue engineering perspectives. European Journal of Orthopaedic Surgery & Traumatology, 28(3), 351–362. https://doi.org/10.1007/s00590-017-2063-0

    Article  Google Scholar 

  20. Andrzejowski, P., & Giannoudis, P. V. (2019). The ‘diamond concept’ for long bone non-union management. Journal of Orthopaedics and Traumatology, 20(1) https://doi.org/10.1186/s10195-019-0528-0

  21. Rico-llanos, G. A., Borrego-gonz, S., Moncayo-donoso, M., Becerra, J., & Visser, R. (2021). Collagen type I biomaterials as scaffolds for bone tissue engineering.

  22. Viguet-Carrin, S., Garnero, P., & Delmas, P. D. (2006) The role of collagen in bone strength. 319–336. https://doi.org/10.1007/s00198-005-2035-9

  23. Chowdhury, S. R., et al. (2018). Collagen type I: A versatile biomaterial. Advances in Experimental Medicine and Biology, 1077, 389–414. https://doi.org/10.1007/978-981-13-0947-2_21

    Article  CAS  PubMed  Google Scholar 

  24. Taubenberger, A. V., Woodruff, M. A., Bai, H., Muller, D. J., & Hutmacher, D. W. (2010). The effect of unlocking RGD-motifs in collagen I on pre-osteoblast adhesion and differentiation. Biomaterials, 31(10), 2827–2835. https://doi.org/10.1016/j.biomaterials.2009.12.051

    Article  CAS  PubMed  Google Scholar 

  25. Gelse, K., Pöschl, E., & Aigner, T. (2003). Collagens - Structure, function, and biosynthesis. Advanced Drug Delivery Reviews, 55(12), 1531–1546. https://doi.org/10.1016/j.addr.2003.08.002

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, D., Wu, X., Chen, J., & Lin, K. (2018). The development of collagen based composite scaffolds for bone regeneration. Bioact. Mater., 3(1), 129–138. https://doi.org/10.1016/j.bioactmat.2017.08.004

    Article  PubMed  Google Scholar 

  27. Ardelean, I. L., et al. (2018). Collagen/hydroxyapatite bone grafts manufactured by homogeneous/heterogeneous 3D printing. Materials Letters, 231, 179–182. https://doi.org/10.1016/j.matlet.2018.08.042

    Article  CAS  Google Scholar 

  28. Montalbano, G., Molino, G., Fiorilli, S., & Vitale-Brovarone, C. (2020). Synthesis and incorporation of rod-like nano-hydroxyapatite into type I collagen matrix: A hybrid formulation for 3D printing of bone scaffolds. Journal of the European Ceramic Society, 40(11), 3689–3697. https://doi.org/10.1016/j.jeurceramsoc.2020.02.018

    Article  CAS  Google Scholar 

  29. Minamide, A., et al. (2005). The use of cultured bone marrow cells in type I collagen gel and porous hydroxyapatite for posterolateral lumbar spine fusion. Spine (Philadelphia, Pa. 1976), 30(10), 1134–1138. https://doi.org/10.1097/01.brs.0000162394.75425.04

    Article  Google Scholar 

  30. Lee, H., Yang, G. H., Kim, M., Lee, J. Y., Huh, J. T., & Kim, G. H. (2018). Fabrication of micro/nanoporous collagen/dECM/silk-fibroin biocomposite scaffolds using a low temperature 3D printing process for bone tissue regeneration. Materials Science and Engineering: C, 84(September 2017), 140–147. https://doi.org/10.1016/j.msec.2017.11.013

    Article  CAS  PubMed  Google Scholar 

  31. Li, Z., Ramay, H. R., Hauch, K. D., Xiao, D., & Zhang, M. (2005). Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomaterials, 26(18), 3919–3928. https://doi.org/10.1016/j.biomaterials.2004.09.062

    Article  CAS  PubMed  Google Scholar 

  32. Al-Ahmady, H. H., et al. (2018). Combining autologous bone marrow mononuclear cells seeded on collagen sponge with nano hydroxyapatite, and platelet-rich fibrin: Reporting a novel strategy for alveolar cleft bone regeneration. Journal of Cranio-Maxillofacial Surgery, 46(9), 1593–1600. https://doi.org/10.1016/j.jcms.2018.05.049

    Article  PubMed  Google Scholar 

  33. Toosi, S., et al. (2019). Bone defect healing is induced by collagen sponge/polyglycolic acid. Journal of Materials Science. Materials in Medicine, 30(3), 4–13. https://doi.org/10.1007/s10856-019-6235-9

    Article  CAS  Google Scholar 

  34. Zhang, B., Luo, Q., Deng, B., Morita, Y., Ju, Y., & Song, G. (2018). Construction of tendon replacement tissue based on collagen sponge and mesenchymal stem cells by coupled mechano-chemical induction and evaluation of its tendon repair abilities. Acta Biomaterialia, 74, 247–259. https://doi.org/10.1016/j.actbio.2018.04.047

    Article  CAS  PubMed  Google Scholar 

  35. Sun, X. C., et al. (2020). Repair of alveolar cleft bone defects by bone collagen particles combined with human umbilical cord mesenchymal stem cells in rabbit. Biomedical Engineering Online, 19(1), 1–19. https://doi.org/10.1186/s12938-020-00800-4

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhou, Y., Yao, H., Wang, J., Wang, D., Liu, Q., & Li, Z. (2015). Greener synthesis of electrospun collagen/ hydroxyapatite composite fibers with an excellent microstructure for bone tissue engineering. International Journal of Nanomedicine, 10, 3203–3215. https://doi.org/10.2147/IJN.S79241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dhand, C., et al. (2016). Bio-inspired in situ crosslinking and mineralization of electrospun collagen scaffolds for bone tissue engineering. Biomaterials, 104, 323–338. https://doi.org/10.1016/j.biomaterials.2016.07.007

    Article  CAS  PubMed  Google Scholar 

  38. Kwak, S., Haider, A., Gupta, K. C., Kim, S., & Kang, I. K., (2016). Micro/nano multilayered scaffolds of PLGA and collagen by alternately electrospinning for bone tissue engineering. Nanoscale Research Letters, 11(1). https://doi.org/10.1186/s11671-016-1532-4.

  39. Guo, S., et al. (2020). Enhanced effects of electrospun collagen-chitosan nanofiber membranes on guided bone regeneration. Journal of Biomaterials Science, Polymer Edition, 31(2), 155–168. https://doi.org/10.1080/09205063.2019.1680927

    Article  CAS  PubMed  Google Scholar 

  40. Catoira, M. C., Fusaro, L., Di Francesco, D., Ramella, M., & Boccafoschi, F. (2019). Overview of natural hydrogels for regenerative medicine applications. Journal of Materials Science: Materials in Medicine, 30(10). https://doi.org/10.1007/s10856-019-6318-7

  41. Suesca, E., Dias, A. M. A., Braga, M. E. M., de Sousa, H. C., & Fontanilla, M. R. (2017). Multifactor analysis on the effect of collagen concentration, cross-linking and fiber/pore orientation on chemical, microstructural, mechanical and biological properties of collagen type I scaffolds. Materials Science and Engineering C, 77, 333–341. https://doi.org/10.1016/j.msec.2017.03.243

    Article  CAS  PubMed  Google Scholar 

  42. Won, Y. H., Kim, S. G., Oh, J. S., & Lim, S. C. (2011). Clinical evaluation of demineralized bone allograft for sinus lifts in humans: A clinical and histologic study. Implant Dentistry, 20(6), 460–464. https://doi.org/10.1097/ID.0b013e31823541e7

    Article  PubMed  Google Scholar 

  43. Itoh, S., et al. (2002). Evaluation of cross-linking procedures of collagen tubes used in peripheral nerve repair. Biomaterials, 23(23), 4475–4481. https://doi.org/10.1016/S0142-9612(02)00166-7

    Article  CAS  PubMed  Google Scholar 

  44. Bharadwaz, A., & Jayasuriya, A. C. (2020). Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration. Materials Science and Engineering: C, 110, 110698. https://doi.org/10.1016/j.msec.2020.110698

    Article  CAS  PubMed  Google Scholar 

  45. Rajan, R. K., Chandran, S., Sreelatha, H. V., John, A., & Parameswaran, R. (2020). Pamidronate-encapsulated electrospun polycaprolactone-based composite scaffolds for osteoporotic bone defect repair. ACS Applied Bio Materials, 3(4), 1924–1933. https://doi.org/10.1021/acsabm.9b01077

    Article  CAS  PubMed  Google Scholar 

  46. Venugopal, J., Vadgama, P., Sampath Kumar, T. S., & Ramakrishna, S. (2007). Biocomposite nanofibres and osteoblasts for bone tissue engineering. Nanotechnology, 18(5). https://doi.org/10.1088/0957-4484/18/5/055101

  47. Agarwal, S., Wendorff, J. H., & Greiner, A. (2008). Use of electrospinning technique for biomedical applications. Polymer (Guildf), 49(26), 5603–5621. https://doi.org/10.1016/j.polymer.2008.09.014

    Article  CAS  Google Scholar 

  48. Ji, C., Annabi, N., Khademhosseini, A., & Dehghani, F. (2011). Fabrication of porous chitosan scaffolds for soft tissue engineering using dense gas CO2. Acta Biomaterialia, 7(4), 1653–1664. https://doi.org/10.1016/j.actbio.2010.11.043

    Article  CAS  PubMed  Google Scholar 

  49. Nam, Y. S., Yoon, J. J., & Park, T. G. (2000). A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive. Journal of Biomedical Materials Research, 53(1), 1–7. https://doi.org/10.1002/(SICI)1097-4636(2000)53:1%3c1::AID-JBM1%3e3.0.CO;2-R

    Article  CAS  PubMed  Google Scholar 

  50. Suh, S. W., et al. (2002). Effect of different particles on cell proliferation in polymer scaffolds using a solvent-casting and particulate leaching technique. ASAIO Journal, 48(5), 460–464. https://doi.org/10.1097/00002480-200209000-00003

    Article  CAS  PubMed  Google Scholar 

  51. Jung, J. T., Kim, J. F., Wang, H. H., di Nicolo, E., Drioli, E., & Lee, Y. M. (2016). Understanding the non-solvent induced phase separation (NIPS) effect during the fabrication of microporous PVDF membranes via thermally induced phase separation (TIPS). Journal of Membrane Science, 514, 250–263. https://doi.org/10.1016/j.memsci.2016.04.069

    Article  CAS  Google Scholar 

  52. Liang, H. Q., Wu, Q. Y., Wan, L. S., Huang, X. J., & Xu, Z. K. (2013). Polar polymer membranes via thermally induced phase separation using a universal crystallizable diluent. Journal of Membrane Science, 446, 482–491. https://doi.org/10.1016/j.memsci.2013.07.008

    Article  CAS  Google Scholar 

  53. Adamiak, K., & Sionkowska, A. (2020). Current methods of collagen cross-linking: Review. International Journal of Biological Macromolecules, 161, 550–560. https://doi.org/10.1016/j.ijbiomac.2020.06.075

    Article  CAS  PubMed  Google Scholar 

  54. Lin, W., et al. (2010). Collagen cryogel cross-linked by dialdehyde starch. Macromolecular Materials and Engineering, 295(2), 100–107. https://doi.org/10.1002/mame.200900292

    Article  CAS  Google Scholar 

  55. Haugh, M. G., Jaasma, M. J., & O’Brien, F. J. (2009). The effect of dehydrothermal treatment on the mechanical and structural properties of collagen-GAG scaffolds. Journal of Biomedical Materials Research Part A, 89(2), 363–369. https://doi.org/10.1002/jbm.a.31955

    Article  CAS  PubMed  Google Scholar 

  56. Lee, J. E., Park, J. C., Hwang, Y. S., Kim, J. K., Kim, J. G., & Sub, H. (2001). Characterization of UV-irradiated dense/porous collagen membranes: Morphology, enzymatic degradation, and mechanical properties. Yonsei Medical Journal, 42(2), 172–179. https://doi.org/10.3349/ymj.2001.42.2.172

    Article  CAS  PubMed  Google Scholar 

  57. Manickam, B., Sreedharan, R., & Elumalai, M. (2014). ‘Genipin’ – the natural water soluble cross-linking agent and its importance in the modified drug delivery systems: An overview. Current Drug Delivery, 11(1), 139–145. https://doi.org/10.2174/15672018113106660059

    Article  CAS  PubMed  Google Scholar 

  58. Jastrzebska, M., Wrzalik, R., Kocot, A., Zalewska-Rejdak, J., & Cwalina, B. (2003). Raman spectroscopic study of glutaraldehyde-stabilized collagen and pericardium tissue. Eating Disorders, 11(1), 185–197. https://doi.org/10.1163/156856203321142605

    Article  Google Scholar 

  59. Wissink, M. J. B., et al. (2001). Immobilization of heparin to EDC/NHS-crosslinked collagen. Characterization and in vitro Evaluation, Biomaterials, 22(2), 151–163. https://doi.org/10.1016/S0142-9612(00)00164-2

    Article  CAS  PubMed  Google Scholar 

  60. Davidenko, N., et al. (2015). Control of crosslinking for tailoring collagen-based scaffolds stability and mechanics. Acta Biomaterialia, 25, 131–142. https://doi.org/10.1016/j.actbio.2015.07.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pavinatto, F. J., Caseli, L., & Oliveira, O. N., (2010). Chitosan in nanostructured thin films\n\npavinatto2010. 1897–1908

  62. Garcia, Y., Collighan, R., Griffin, M., & Pandit, A. (2007). Assessment of cell viability in a three-dimensional enzymatically cross-linked collagen scaffold. Journal of Materials Science. Materials in Medicine, 18(10), 1991–2001. https://doi.org/10.1007/s10856-007-3091-9

    Article  CAS  PubMed  Google Scholar 

  63. Chen, T., Embree, H. D., Brown, E. M., Taylor, M. M., & Payne, G. F. (2003). Enzyme-catalyzed gel formation of gelatin and chitosan: Potential for in situ applications. Biomaterials, 24(17), 2831–2841. https://doi.org/10.1016/S0142-9612(03)00096-6

    Article  CAS  PubMed  Google Scholar 

  64. Mitchell, P., & Moyle, J. (1967). © 1967 Nature Publishing Group. Nature Publishing Group, 216, 615–616.

    Google Scholar 

  65. Soloshenko, I. A., Bazhenov, V. Y., Khomich, V. A., Tsiolko, V. V., & Potapchenko, N. G. (2006). Comparative research of efficiency of water decontamination by UV radiation of cold hollow cathode discharge plasma versus that of low- and medium-pressure mercury lamps. IEEE Transactions on Plasma Science, 34(4), 1365–1369. https://doi.org/10.1109/TPS.2006.878997

    Article  CAS  Google Scholar 

  66. Wang, X., Zhang, A., Yan, G., Sun, W., Han, Y., & Sun, H., (2013). Metabolomics and proteomics annotate therapeutic properties of geniposide: Targeting and regulating multiple perturbed pathways. PLoS One, 8(8). https://doi.org/10.1371/journal.pone.0071403

  67. Butler, M. F., Ng, Y. F., & Pudney, P. D. A. (2003). Mechanism and kinetics of the crosslinking reaction between biopolymers containing primary amine groups and genipin. Journal of Polymer Science Part A: Polymer Chemistry, 41(24), 3941–3953. https://doi.org/10.1002/pola.10960

    Article  CAS  Google Scholar 

  68. Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science, 31(7), 603–632. https://doi.org/10.1016/j.progpolymsci.2006.06.001

    Article  CAS  Google Scholar 

  69. Rocha, M. A. M., Coimbra, M. A., & Nunes, C. (2017). Applications of chitosan and their derivatives in beverages: A critical review. Current Opinion in Food Science, 15, 61–69. https://doi.org/10.1016/j.cofs.2017.06.008

    Article  Google Scholar 

  70. Costello, L. C., Chellaiah, M., Zou, J., Franklin, R. B., & Reynolds, M. A. (2014). The status of citrate in the hydroxyapatite/collagen complex of bone; and Its role in bone formation. Journal of Regenerative Medicine and Tissue Engineering, 3(1), 4. https://doi.org/10.7243/2050-1218-3-4

    Article  PubMed  Google Scholar 

  71. Hu, Y. Y., Rawal, A., & Schmidt-Rohr, K. (2010). Strongly bound citrate stabilizes the apatite nanocrystals in bone. Proceedings of the National Academy of Sciences, 107(52), 22425–22429. https://doi.org/10.1073/pnas.1009219107

    Article  CAS  Google Scholar 

  72. Schwarcz, H. P., Agur, K., & Jantz, L. M. (2010). A new method for determination of postmortem interval: Citrate content of bone. Journal of Forensic Sciences, 55(6), 1516–1522. https://doi.org/10.1111/j.1556-4029.2010.01511.x

    Article  PubMed  Google Scholar 

  73. Davies, E. et al. (2014). Citrate bridges between mineral platelets in bone. Proceedings of the National Academy of Sciences, 111(14). https://doi.org/10.1073/pnas.1315080111

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception. The first draft of the manuscript was written by Ashwathi Vijayalekha; review and editing was done by Suresh Kumar Anandasadagop. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ashok Kumar Pandurangan.

Ethics declarations

Ethics Approval

This is an observational study; hence, no ethical approval is required.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijayalekha, A., Anandasadagopan, S.K. & Pandurangan, A.K. An Overview of Collagen-Based Composite Scaffold for Bone Tissue Engineering. Appl Biochem Biotechnol 195, 4617–4636 (2023). https://doi.org/10.1007/s12010-023-04318-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04318-y

Keywords

Navigation