Skip to main content

Advertisement

Log in

Effects of Mixing and Particle Size on the Kinetics and Dynamics of Enzymatically Treated Cotton Cellulose (MCC) in Continuous Flow Reactor

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Enzymatic hydrolysis (EH) of cellulosic biomass needs tremendous technological advancement so as to efficiently convert cellulosic biomass into renewable fuels and commodity chemicals. Therefore, development of highly improved process engineering techniques is inevitable to reduce the processing cost of the fluids in the reactor. In this investigation, effect of mixing and particle size on the EH of microcrystalline cotton cellulose (MCC) has been investigated by using a spatially averaged low-dimensional two-mode mixing (TMM) model. The model simulations were carried out for the average particle sizes of MCC ranging from 0.78 to 25.52 μm and mixing speed of η → 0 (very high) to η → 1000 (very low). The effects of mixing and particle size on the formation of glucose and reducing sugar (RS) have been quantified by exploiting the rigorous multistep reaction kinetics and TMM model. To access the bond-breaking ability, its effects on the degree of polymerization (DP) was also analyzed. The results deduced that increase in mixing limitations and reduction in particle size imparts a significant increase in glucose and RS yield while decreasing the DP drastically. Thus, our simulations reveal that while η → 1000 economizes the process by reducing the energy requirements, reduction in particle size can be beneficial for reducing the residence time in the depolymerization of MCC to fuels and chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Suga, K., van Dedem, G., & Moo-Young, M. (1975). Degradation of polysaccharides by endo and exo enzymes: A theoretical analysis. Biotechnology and Bioengineering, 17, 433–439.

    Article  CAS  Google Scholar 

  2. Ryu, D. D. Y., & Lee, S. B. (1986). Enzymatic hydrolysis of cellulose: Determination of kinetic parameters. Chemical Engineering Communications, 45, 119–134.

    Article  CAS  Google Scholar 

  3. Wyman, C. E., Spindler, D. D., & Grohmann, K. (1992). Simultaneous saccharification and fermentation of several lignocellulosic feedstocks to fuel ethanol. Biomass & Bioenergy, 3, 301–307.

    Article  CAS  Google Scholar 

  4. Swatloski, R. P., Spear, S. K., Holbrey, J. D., & Rogers, R. D. (2002). Dissolution of cellulose with ionic liquids. Journal of American Chemical Society, 124, 4974–4975.

    Article  CAS  Google Scholar 

  5. Román-Leshkov, Y., Barrett, C. J., Liu, Z. Y., & Dumesic, J. A. (2007). Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature, 44, 982–986.

    Article  Google Scholar 

  6. Gaikwad, A., & Chakraborty, S. (2013). Mixing effects on the kinetics of enzymatic hydrolysis of Avicel for batch production of cellulosic ethanol. Industrial & Engineering Chemistry Research, 52(11), 3988–3999.

    Article  CAS  Google Scholar 

  7. González Quiroga, A., Bula Silvera, A., Vasquez Padilla, R., da Costa, A. C., & Maciel Filho, R. (2015). Continuous and semicontinuous reaction systems for high-solids enzymatic hydrolysis of lignocellulosics. Brazilian Journal Chemical Engineering, 32(4), 805–819.

    Article  Google Scholar 

  8. Stickel, J. J., Adhikari, B., Sievers, D. A., & Pellegrino, J. (2018). Continuous enzymatic hydrolysis of lignocellulosic biomass in a membrane-reactor system. Journal of Chemical Technology & Biotechnology, 93(8), 2181–2190.

    Article  CAS  Google Scholar 

  9. Lischeske, J. J., & Stickel, J. J. (2019). A two-phase substrate model for enzymatic hydrolysis of lignocellulose: Application to batch and continuous reactors. Biotechnology Biofuels & Bioproducts, 12, 299.

    Article  CAS  Google Scholar 

  10. Pérez-Pimienta, J. A., Papa, G., Gladden, J. M., Simmons, B. A., & Sanchez, A. (2020). The effect of continuous tubular reactor technologies on the pretreatment of lignocellulosic biomass at pilot-scale for bioethanol production. RSC Advances, 10, 18147–18159.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gurram, R. N., & Menkhaus, T. J. (2014). Continuous enzymatic hydrolysis of lignocellulosic biomass with simultaneous detoxification and enzyme recovery. Applied Biochemistry and Biotechnology, 173, 1319–1335.

    Article  CAS  PubMed  Google Scholar 

  12. Graham, J., Clark, M., Nadler, D., Huffer, S., Chokhawala, H. A., Rowland, S. E., Blanch, H. W., Clark, D. S., & Robb, F. T. (2011). Identification and characterization of a multidomain hyperthermophilic cellulase from an archaeal enrichment. Nature Communications, 2, 375.

    Article  PubMed  Google Scholar 

  13. Dubois, M., Gills, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350–356.

    Article  CAS  Google Scholar 

  14. Reese, E. T., & Ryu, D. Y. (1980). Shear inactivation of cellulase of Trichoderma reesei. Enzyme & Microbial Technology, 2, 239–240.

    Article  CAS  Google Scholar 

  15. Chakraborty, S., Aniket, & Gaikwad, A. (2010). Mixing effects in cellulase-mediated hydrolysis of cellulose for bio-ethanol production. Industrial & Engineering Chemistry Research, 49, 10818–10825.

    Article  CAS  Google Scholar 

  16. Gaikwad, A. (2018). Interactions of mixing and reaction kinetics of depolymerization of cellulose to renewable fuels. Chemical Engineering Communications, 205(1), 47–81.

    Article  CAS  Google Scholar 

  17. Chakraborty, S., & Gaikwad, A. (2011). Production of cellulosic fuels: A review. Proceedings of National Academy of Sciences India, 81, 59–71.

    Google Scholar 

  18. Rivers, D. B., & Emert, G. H. (1988). Factors affecting the enzymatic hydrolysis of municipal solid waste components. Biotechnology & Bioengineering, 26, 278–281.

    Article  Google Scholar 

  19. Zhang, Y. H. P., & Lynd, L. R. (2004). Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems. Biotechnology & Bioengineering, 88, 797–824.

    Article  CAS  Google Scholar 

  20. Ramos, L. P., Nazhad, M. M., & Saddler, J. N. (1993). Effect of enzymatic hydrolysis on the morphology and fine structure of pretreated cellulosic residues. Enzyme & Microbial Technology, 15(10), 821–831.

    Article  CAS  Google Scholar 

  21. Kleinebudde, P., Jumaa, M., & Saleh, F. E. (2000). Influence of degree of polymerization on behavior of cellulose during homogenization and extrusion/spheronization. AAPS PharmSci, 2(2), 1–10.

    Google Scholar 

  22. Grethlein, H. E. (1985). The effect of pore size distribution on the rate of enzymatic hydrolysis of cellulosic substrates. Nature Biotechnology, 3(2), 155–160.

    Article  CAS  Google Scholar 

  23. El-Sakhawy, M., & Hassan, M. L. (2007). Physical and mechanical properties of microcrystalline cellulose prepared from agricultural residues. Carbohydrate Polymers, 67(1), 1–10.

    Article  CAS  Google Scholar 

  24. Wen, Z., Liao, W., & Chen, S. (2004). Hydrolysis of animal manure lignocellulosics for reducing sugar production. Bioresource Technology, 91(1), 31–39.

    Article  CAS  PubMed  Google Scholar 

  25. Goel, S. C., & Ramachandran, K. B. (1983). Studies on the adsorption of cellulase on lignocellulosics. Journal of Fermentation Technology, 61(3), 281–286.

    CAS  Google Scholar 

  26. Peters, L. E., Walker, L. P., Wilson, D. B., & Irwin, D. C. (1991). The impact of initial particle size on the fragmentation of cellulose by the cellulase of Thermomonospora fusca. Bioresource Technology, 35(3), 313–319.

    Article  CAS  Google Scholar 

  27. Chang, V. S., Burr, B., & Holtzapple, M. T. (1997). Lime pretreatment of switchgrass. Applied Biochemistry and Biotechnology, 63–65, 3–19.

    Article  PubMed  Google Scholar 

  28. Khullar, E., Dien, B. S., Rausch, K. D., Tumbleson, M. E., & Singh, V. (2013). Effect of particle size on enzymatic hydrolysis of pretreated Miscanthus. Industrial Crops and Products, 44, 11–17.

    Article  CAS  Google Scholar 

  29. Dibble, C. J., Shatova, T. A., Jorgenson, J. L., & Stickel, J. J. (2011). Particle morphology characterization and manipulation in biomass slurries and the effect on rheological properties and enzymatic conversion. Biotechnology Progress, 27, 1751–1759.

    Article  CAS  PubMed  Google Scholar 

  30. Yeh, A., Huang, Y. C., & Chen, S. H. (2010). Effect of particle size on the rate of enzymatic hydrolysis of cellulose. Carbohydrate Polymer, 79(1), 192–199.

    Article  CAS  Google Scholar 

  31. Gaikwad, A. (2019). Effect of particle size on the kinetics of enzymatic hydrolysis of microcrystalline cotton cellulose: A modeling and simulation study. Applied Biochemistry and Biotechnology, 187(3), 800–816.

    Article  CAS  PubMed  Google Scholar 

  32. Csiszar, E., Szabo, Z., Balogh, O., Fekete, E., & Koczka, K. (2021). The role of the particle size reduction and morphological changes of solid substrate in the ultrasound-aided enzymatic hydrolysis of cellulose. Ultrasonics Sonochemistry, 78, 105711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Szabo, O. E., & Csiszar, E. (2017). Some factors affecting efficiency of the ultrasound-aided enzymatic hydrolysis of cotton cellulose. Carbohydrate Polymers, 156, 357–363.

    Article  CAS  PubMed  Google Scholar 

  34. Subhedar, P. B., Babu, N. R., & Gogate, P. R. (2015). Intensification of enzymatic hydrolysis of waste newspaper using ultrasound for fermentable sugar production. Ultrasonics Sonochemistry, 22, 326–332.

    Article  CAS  PubMed  Google Scholar 

  35. Li, X., Mettu, S., Martin, G. J. O., Ashokkumar, M., & Lin, C. S. K. (2019). Ultrasonic pretreatment of food waste to accelerate enzymatic hydrolysis for glucose production. Ultrasonics Sonochemistry, 53, 77–82.

    Article  CAS  PubMed  Google Scholar 

  36. Ghose, T. K., & Das, K. (1971). Advances in biochemical engineering (Vol. 1). Springer Verlag.

    Google Scholar 

  37. Whitaker, D. R. (1954). Hydrolysis of a series of beta-1,4′-oligoglucosides by Myrothecium verrucaria cellulase. Archives of Biochemistry and Biophysics, 53(2), 439–449.

    Article  CAS  PubMed  Google Scholar 

  38. Whitaker, D. R. (1957). The mechanism of degradation of cellulose by Myrothecium cellulase. Canadian Journal of Biochemistry and Physiology, 35(9), 733–742.

    Article  CAS  PubMed  Google Scholar 

  39. Okazaki, M., & Moo-Young, M. (1978). Kinetics of enzymatic hydrolysis of cellulose: Analytical description of mechanistic model. Biotechnology & Bioengineering, 20(5), 637–663.

    Article  CAS  Google Scholar 

  40. Trusek-Holownia, A., & Noworyta, A. (2015). A model for kinetics of enzymatic hydrolysis of biopolymers–a concept for determination of hydrolysate composition. Chemical Engineering and Processing: Process Intensification, 89, 54–61.

    Article  CAS  Google Scholar 

  41. Huron, M., Hudebine, D., Lopes Ferreira, N., & Lachenal, D. (2016). Mechanistic modeling of enzymatic hydrolysis of cellulose integrating substrate morphology and cocktail composition. Biotechnology & Bioengineering, 113(5), 1011–1023.

    Article  CAS  Google Scholar 

  42. Lynd, L. R., & Zhang, Y. H. P. (2005). Determination of number-average degree of polymerization of cellodextrins and cellulose with application to enzymatic hydrolysis. Biomacromolecules, 6, 1510–1515.

    Article  PubMed  Google Scholar 

  43. Chakraborty, S., & Balakotaiah, V. (2002). Low-dimensional models for describing mixing effects in laminar flow tubular reactors. Chemical Engineering Science, 57, 2545–2564.

    Article  CAS  Google Scholar 

  44. Chakraborty, S., & Balakotaiah, V. (2005). Spatially averaged multi-scale models for chemical reactors. Advances in Chemical Engineering, 30, 205–297.

    Article  CAS  Google Scholar 

  45. Bodenstein, M., & Wolgast, K. (1908). Reaktionsgeschwindigkeit in Strömenden Gasen. Zeitschrift für physikalische Chemie. Stöchiometrie und Verwandtschaftslehre, 61, 422–436.

    CAS  Google Scholar 

  46. Bhattacharya, M., Harold, M. P., & Balakotaiah, V. (2004). Low-dimensional models for homogeneous stirred tank reactors. Chemical Engineering Science, 59, 5587–5596.

    Article  CAS  Google Scholar 

  47. Sangseethong, K., Meunier-Goddik, L., Tantasucharit, U., Liaw, E. T., & Penner, M. H. (1998). Rationale for particle size effect on rates of enzymatic saccharification of microcrystalline cellulose. Journal of Food Biochemistry, 22(4), 321–330.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A. Gaikwad has contributed in conceptualization, modeling and simulations, results and discussion, and manuscript writing.

Corresponding author

Correspondence to Ashwin Gaikwad.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Author shows his consent for publication.

Conflict of Interest

The author declares no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaikwad, A. Effects of Mixing and Particle Size on the Kinetics and Dynamics of Enzymatically Treated Cotton Cellulose (MCC) in Continuous Flow Reactor. Appl Biochem Biotechnol 195, 3585–3605 (2023). https://doi.org/10.1007/s12010-022-04290-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04290-z

Keywords

Navigation