Skip to main content

Advertisement

Log in

Characterization, Anti-proliferative Activity, and Bench-Scale Production of Novel pH-Stable and Thermotolerant L-Asparaginase from Bacillus licheniformis PPD37

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Bacterial L-asparaginase (LA) is a chemotherapeutic drug that has remained mainstay of cancer treatment for several decades. LA has been extensively used worldwide for the treatment of acute lymphoblastic leukemia (ALL). A halotolerant bacterial strain Bacillus licheniformis sp. isolated from marine environment was used for LA production. The enzyme produced was subjected to purification and physico-chemical characterisation. Purified LA was thermotolerant and demonstrated more than 90% enzyme activity after 1 h of incubation at 80 °C. LA has also proved to be resistant against pH gradient and retained activity at pH ranging from 3.0 to 10. The enzyme also had high salinity tolerance with 90% LA activity at 10% NaCl concentration. Detergents like Triton X-100 and Tween-80 were observed to inhibit LA activity while more than 70% catalytic activity was maintained in the presence of metals. Electrophoretic analysis revealed that LA is a heterodimer (~ 63 and ~ 65 kDa) and has molecular mass of around 130 kDa in native form. The kinetic parameters of LA were tested with LA having low Km value of 1.518 µM and Vmax value of 6.94 µM/min/mL. Purified LA has also exhibited noteworthy antiproliferative activity against cancer cell lines—HeLa, SiHa, A549, and SH-SY-5Y. In addition, bench-scale LA production was conducted in a 5-L bioreactor using moringa leaves as cost-effective substrate.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The datasets supporting the conclusions of this article are included within the article and its additional files.

References

  1. Lanvers-Kaminsky, C. (2017). Asparaginase pharmacology: Challenges still to be faced. Cancer Chemotherapy and Pharmacology, 79(3), 439–450. https://doi.org/10.1007/s00280-016-3236-y

    Article  CAS  PubMed  Google Scholar 

  2. Müller, H. J., & Boos, J. (1998). Use of L-asparaginase in childhood ALL. Critical Reviews in Oncology/Hematology, 28(2), 97–113. https://doi.org/10.1016/s1040-8428(98)00015-8

    Article  PubMed  Google Scholar 

  3. Inaba, H., Greaves, M., & Mullighan, C. G. (2013). Acute lymphoblastic leukaemia. The Lancet, 381(9881), 1943–1955. https://doi.org/10.1016/S0140-6736(12)62187-4

    Article  Google Scholar 

  4. Ueno, T., Ohtawa, K., Mitsui, K., Kodera, Y., Hiroto, M., Matsushima, A., Inada, Y., & Nishimura, H. (1997). Cell cycle arrest and apoptosis of leukemia cells induced by L-asparaginase. Leukemia, 11, 1858–1861. https://doi.org/10.1038/sj.leu.2400834

    Article  CAS  PubMed  Google Scholar 

  5. Cecconello, D. K., Magalhães, M. R. D., Werlang, I. C. R., Lee, M. L. D. M., Michalowski, M. B., & Daudt, L. E. (2020). Asparaginase: An old drug with new questions. Hematology, Transfusion and Cell Therapy, 42(3), 275–282. https://doi.org/10.1016/j.htct.2019.07.010

    Article  PubMed  Google Scholar 

  6. Global Asparaginase Market Segment Outlook, Market Assessment, Competition Scenario, Trends and Forecast 2019–2028. 2020. Retrieved from https://market.us/report/asparaginase-market/

  7. Brumano, L. P., da Silva, F. V. S., Costa-Silva, T. A., Apolinário, A. C., Santos, J. H. P. M., Kleingesinds, E. K., Monterio, G., Rangel-Yagui, C. O., Benyahia, B., & Junior, A. P. (2019). Development of L-Asparaginase biobetters: Current research status and review of the desirable quality profiles. Frontiers in Bioengineering and Biotechnology, 6, 1–22. https://doi.org/10.3389/fbioe.2018.00212

    Article  Google Scholar 

  8. Killander, D., Dohlwitz, A., Engstedt, L., Franzén, S., Gahrton, G., Gullbring, B., Holm, G., Holmgren, A., Höglund, S., Killander, A., Lockner, D., Mellstedt, H., Moe, P. J., Palmblad, J., Reizenstein, O., Skarberg, K. O., Swedberg, B., Uden, A. M., Wadman, B., … Åhström, L. (1976). Hypersensitive reactions and antibody formation during L-asparaginase treatment of children and adults with acute leukemia. Cancer, 37(1), 220–228. https://doi.org/10.1002/1097-0142(197601)37:1%3c220::AID-CNCR2820370132%3e3.0.CO;2-W

    Article  CAS  PubMed  Google Scholar 

  9. Pieters, R., Hunger, S. P., Boos, J., Rizzari, C., Silverman, L., Baruchel, A., Goekbuget, N., Schrappe, M., & Pui, C.-H. (2011). L-asparaginase treatment in acute lymphoblastic leukemia. Cancer, 117(2), 238–249. https://doi.org/10.1002/cncr.25489

    Article  CAS  PubMed  Google Scholar 

  10. Kearney, S. L., Dahlberg, S. E., Levy, D. E., Voss, S. D., Sallan, S. E., & Silverman, L. B. (2009). Clinical course and outcome in children with acute lymphoblastic leukemia and asparaginase-associated pancreatitis. Pediatric Blood & Cancer, 53, 162–167. https://doi.org/10.1002/pbc.22076

    Article  Google Scholar 

  11. Iyer, R. S., Rao, S. R., Pai, S., Advani, S. H., & Magrath, I. T. (1993). L-asparaginase related hyperglycemia. Indian Journal of Cancer, 30(2), 72–76.

    CAS  PubMed  Google Scholar 

  12. Beinart, G., & Damon, L. (2004). Thrombosis associated with L-asparaginase therapy and low fibrinogen levels in adult acute lymphoblastic leukemia. American Journal of Hematology, 77(4), 331–335. https://doi.org/10.1002/ajh.20230

    Article  CAS  PubMed  Google Scholar 

  13. Patel, P., Gosai, H., Panseriya, H., & Dave, B. (2022). Development of process and data centric inference system for enhanced production of L-Asparaginase from halotolerant Bacillus licheniformis PPD37. Applied Biochemistry and Biotechnology, 194(4), 1659–1681. https://doi.org/10.1007/s12010-021-03707-5

    Article  CAS  PubMed  Google Scholar 

  14. Prakash, P., Singh, H. R., & Jha, S. K. (2020). Production, purification and kinetic characterization of glutaminase free anti-leukemic L-asparaginase with low endotoxin level from novel soil isolate. Preparative Biochemistry and Biotechnology, 50(3), 260–271. https://doi.org/10.1080/10826068.2019.1692221

    Article  CAS  PubMed  Google Scholar 

  15. Darvishi, F., Faraji, N., & Shamsi, F. (2019). Production and structural modeling of a novel asparaginase in Yarrowia lipolytica. International Journal of Biological Macromolecules, 125, 955–961. https://doi.org/10.1016/j.ijbiomac.2018.12.162

    Article  CAS  PubMed  Google Scholar 

  16. Costa-Silva, T. A., Camacho-Córdova, D. I., Agamez-Montalvo, G. S., Parizotto, L. A., Sánchez-Moguel, I., & Pessoa-Jr, A. (2019). Optimization of culture conditions and bench-scale production of anticancer enzyme L-asparaginase by submerged fermentation from Aspergillus terreus CCT 7693. Preparative Biochemistry and Biotechnology, 49(1), 95–104. https://doi.org/10.1080/10826068.2018.1536990

    Article  CAS  PubMed  Google Scholar 

  17. Ghosh, S., Murthy, S., Govindasamy, S., & Chandrasekaran, M. (2013). Optimization of L-asparaginase production by Serratia marcescens (NCIM 2919) under solid state fermentation using coconut oil cake. Sustainable Chemical Processes, 1(1), 1–8. https://doi.org/10.1186/2043-7129-1-9

    Article  CAS  Google Scholar 

  18. Kumar, M. N. S., Ramasamy, R., & Manonmani, H. K. (2013). Production and optimization of l-asparaginase from Cladosporium sp using agricultural residues in solid state fermentation. Industrial Crops and Products, 43(1), 150–158. https://doi.org/10.1016/j.indcrop.2012.07.023

    Article  CAS  Google Scholar 

  19. Fernandes, M. L. P., Alcântara Veríssimo, L. A., Cristina de Souza, A., Schwan, R. F., & Ribeiro Dias, D. (2021). Low-cost agro-industrial sources as a substrate for the production of l-asparaginase using filamentous fungi. Biocatalysis and Agricultural Biotechnology, 34, 102037. https://doi.org/10.1016/j.bcab.2021.102037

    Article  Google Scholar 

  20. Qeshmi, F. I., Homaei, A., Fernandes, P., & Javadpour, S. (2018). Marine microbial L-asparaginase: Biochemistry, molecular approaches and applications in tumor therapy and in food industry. Microbiological Research, 208, 99–112. https://doi.org/10.1016/j.micres.2018.01.011

    Article  CAS  Google Scholar 

  21. Imada, A., Igarasi, S., Nakahama, K., & Isono, M. (1973). Asparaginase and glutaminase activities of micro-organisms. Journal of General Microbiology, 76(1), 85–99. https://doi.org/10.1099/00221287-76-1-85

    Article  CAS  PubMed  Google Scholar 

  22. Vala, A. K., Sachaniya, B., Dudhagara, D., Panseriya, H. Z., Gosai, H., Rawal, R., & Dave, B. P. (2018). Characterization of L-asparaginase from marine-derived Aspergillus niger AKV-MKBU, its antiproliferative activity and bench scale production using industrial waste. International Journal of Biological Macromolecules, 108, 41–46. https://doi.org/10.1016/j.ijbiomac.2017.11.114

    Article  CAS  PubMed  Google Scholar 

  23. Mahajan, R. V., Kumar, V., Rajendran, V., Saran, S., Ghosh, P. C., & Saxena, R. K. (2014). Purification and characterization of a novel and robust L-asparaginase having low-glutaminase activity from Bacillus licheniformis: In vitro evaluation of anti-cancerous properties. PLoS One, 9(6). https://doi.org/10.1371/journal.pone.0099037

  24. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  25. Laemmli, U. (1979). Slab gel electrophoresis: SDS–PAGE with discontinuous buffers. Nature, 227, 680–685.

    Article  Google Scholar 

  26. Rabilloud, T., Vuillard, L., Gilly, C., & Lawrence, J. J. (2006). Silver staining of proteins in polyacrylamide gels. Nature Protocols, 1(4), 1852–1858. https://doi.org/10.1038/nprot.2006.288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jiao, L., Chi, H., Lu, Z., Zhang, C., Chia, S. R., Show, P. L., Tao, Y., & Lu, F. (2020). Characterization of a novel type I L-asparaginase from Acinetobacter soli and its ability to inhibit acrylamide formation in potato chips. Journal of Bioscience and Bioengineering, 129(6), 672–678. https://doi.org/10.1016/j.jbiosc.2020.01.007

    Article  CAS  PubMed  Google Scholar 

  28. Kumar, S., Venkata Dasu, V., & Pakshirajan, K. (2011). Purification and characterization of glutaminase-free l-asparaginase from Pectobacterium carotovorum MTCC 1428. Bioresource Technology, 102(2), 2077–2082. https://doi.org/10.1016/j.biortech.2010.07.114

    Article  CAS  PubMed  Google Scholar 

  29. Farahat, M. G., Amr, D., & Galal, A. (2020). Molecular cloning, structural modeling and characterization of a novel glutaminase-free L-asparaginase from Cobetia amphilecti AMI6. International Journal of Biological Macromolecules, 143, 685–695. https://doi.org/10.1016/j.ijbiomac.2019.10.258

    Article  CAS  PubMed  Google Scholar 

  30. Sindhu, R., & Manonmani, H. K. (2018). Expression and characterization of recombinant L-asparaginase from Pseudomonas fluorescens. Protein Expression and Purification, 143, 83–91. https://doi.org/10.1016/j.pep.2017.09.009

    Article  CAS  PubMed  Google Scholar 

  31. Husain, I., Sharma, A., Kumar, S., & Malik, F. (2016). Purification and characterization of glutaminase free asparaginase from Enterobacter cloacae: In-vitro evaluation of cytotoxic potential against human myeloid leukemia HL-60 cells. PLoS One, 11(2), 1–27. https://doi.org/10.1371/journal.pone.0148877

    Article  CAS  Google Scholar 

  32. Shakambari, G., Birendranarayan, A. K., AngelaaLincy, M. J., Rai, S. K., Ahamed, Q. T., Ashokkumar, B., Sarvanan, M., Mahesh, A., & Varalakshmi, P. (2016). Hemocompatible glutaminase free L-asparaginase from marine Bacillus tequilensis PV9W with anticancer potential modulating p53 expression. RSC Advances, 6(31), 25943–25951. https://doi.org/10.1039/C6RA00727A

    Article  CAS  Google Scholar 

  33. Vimal, A., & Kumar, A. (2021). Antimicrobial potency evaluation of free and immobilized L-asparaginase using chitosan nanoparticles. Journal of Drug Delivery Science and Technology, 61, 102231. https://doi.org/10.1016/j.jddst.2020.102231

    Article  CAS  Google Scholar 

  34. Su, B., & Chen, X. (2020). Current status and potential of Moringa oleifera Leaf as an alternative protein source for animal feeds. Frontiers in Veterinary Science, 7, 1–13. https://doi.org/10.3389/fvets.2020.00053

    Article  Google Scholar 

  35. Moyo, B., Masika, P. J., Hugo, A., & Muchenje, V. (2011). Nutritional characterization of Moringa (Moringa oleifera Lam.) leaves. African Journal of Biotechnology, 10(60), 12925–12933. https://doi.org/10.5897/ajb10.1599

    Article  CAS  Google Scholar 

  36. Alrumman, S. A., Mostafa, Y. S., Al-izran, K. A., Alfaifi, M. Y., Taha, T. H., & Elbehairi, S. E. (2019). Production and anticancer activity of an L-Asparaginase from Bacillus licheniformis Isolated from the Red Sea, Saudi Arabia. Scientific Reports, 9(1), 3756. https://doi.org/10.1038/s41598-019-40512-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Goswami, R., Hegde, K., & Veeranki, V. D. (2014). Batch, Fed Batch Production and Characterization of glutaminase free L-Asparaginase II of Pectobacterium carotovorum MTCC 1428 in Escherichia coli. Advances in Microbiology, 04(10), 667–680. https://doi.org/10.4236/aim.2014.410072

    Article  Google Scholar 

  38. Krishnapura, P. R., & Belur, P. D. (2016). Partial purification and characterization of L-asparaginase from an endophytic Talaromyces pinophilus isolated from the rhizomes of Curcuma amada. Journal of Molecular Catalysis B: Enzymatic, 124, 83–91. https://doi.org/10.1016/j.molcatb.2015.12.007

    Article  CAS  Google Scholar 

  39. Pola, M., Rajulapati, S. B., Potla Durthi, C., Erva, R. R., & Bhatia, M. (2018). In silico modelling and molecular dynamics simulation studies on L-Asparaginase isolated from bacterial endophyte of Ocimum tenuiflorum. Enzyme and Microbial Technology, 117, 32–40. https://doi.org/10.1016/j.enzmictec.2018.06.005

    Article  CAS  PubMed  Google Scholar 

  40. Husain, I., Sharma, A., Kumar, S., & Malik, F. (2016). Purification and characterization of glutaminase free asparaginase from Pseudomonas otitidis: Induce apoptosis in human leukemia MOLT-4 cells. Biochimie, 121, 38–51. https://doi.org/10.1016/j.biochi.2015.11.012

    Article  CAS  PubMed  Google Scholar 

  41. Mostafa, Y., Alrumman, S., Alamri, S., Hashem, M., Al-izran, K., Alfaifi, M., Elbehairi, S. E., & Taha, T. (2019). Enhanced production of glutaminase-free L-asparaginase by marine Bacillus velezensis and cytotoxic activity against breast cancer cell lines. Electronic Journal of Biotechnology, 42, 6–15. https://doi.org/10.1016/j.ejbt.2019.10.001

    Article  CAS  Google Scholar 

  42. Sudhir, A. P., Dave, B. R., Prajapati, A. S., Panchal, K., Patel, D., & Subramanian, R. B. (2014). Characterization of a recombinant glutaminase-free L-Asparaginase (ansA3) enzyme with high catalytic activity from Bacillus licheniformis. Applied Biochemistry and Biotechnology, 174(7), 2504–2515. https://doi.org/10.1007/s12010-014-1200-z

    Article  CAS  PubMed  Google Scholar 

  43. El-Fakharany, E., Orabi, H., Abdelkhalek, E., & Sidkey, N. (2020). Purification and biotechnological applications of L-asparaginase from newly isolated Bacillus halotolerans OHEM18 as antitumor and antioxidant agent. Journal of Biomolecular Structure and Dynamics, 40(9), 1–13. https://doi.org/10.1080/07391102.2020.1851300

    Article  CAS  Google Scholar 

  44. Lee, S.-J., Lee, Y., Park, G., Umasuthan, N., Heo, S., Zoysa, M. D., Jung, W., Lee, D., Kim, H., Kang, D., & Oh, C. (2016). A newly identified glutaminase-free L-Asparaginase (L-ASPG86) from the marine bacterium Mesoflavibacter zeaxanthinifaciens. Journal of Microbiology and Biotechnology, 26(6), 1115–1123. https://doi.org/10.4014/jmb.1510.10092

    Article  CAS  PubMed  Google Scholar 

  45. Dash, C., Mohapatra, S. B., & Maiti, P. K. (2016). Optimization, purification, and characterization of L-asparaginase from Actinomycetales bacterium BkSoiiA. Preparative Biochemistry and Biotechnology, 46(1), 1–7. https://doi.org/10.1080/10826068.2014.969437

    Article  CAS  PubMed  Google Scholar 

  46. El-Naggar, N.E.-A., Deraz, S. F., Soliman, H. M., El-Deeb, N. M., & El-Ewasy, S. M. (2016). Purification, characterization, cytotoxicity and anticancer activities of L-asparaginase, anti-colon cancer protein, from the newly isolated alkaliphilic Streptomyces fradiae NEAE-82 Noura. Scientific Reports, 6(3), 306–324. https://doi.org/10.1038/srep32926

    Article  CAS  Google Scholar 

  47. Stecher, A. L., Morgantetti De Deus, P., Polikarpov, I., & Abrahão-Neto, J. (1999). Stability of L-asparaginase: An enzyme used in leukemia treatment. Pharmaceutica Acta Helvetiae, 74(1), 1–9. https://doi.org/10.1016/S0031-6865(99)00009-6

    Article  CAS  PubMed  Google Scholar 

  48. Abdelrazek, N. A., Elkhatib, W. F., Raafat, M. M., & Aboulwafa, M. M. (2019). Experimental and bioinformatics study for production of l-asparaginase from Bacillus licheniformis: A promising enzyme for medical application. AMB Express, 9(1), 39. https://doi.org/10.1186/s13568-019-0751-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Eisele, N., Linke, D., Bitzer, K., Na’amnieh, S., Nimtz, M., & Berger, R. G. (2011). The first characterized asparaginase from a basidiomycete Flammulina velutipes. Bioresource Technology, 102(3), 3316–3321. https://doi.org/10.1016/j.biortech.2010.10.098

    Article  CAS  PubMed  Google Scholar 

  50. Yim, S., & Kim, M. (2019). Purification and characterization of thermostable l-asparaginase from Bacillus amyloliquefaciens MKSE in Korean soybean paste. LWT, 109, 415–421. https://doi.org/10.1016/j.lwt.2019.04.050

    Article  CAS  Google Scholar 

  51. Huang, L., Liu, Y., Sun, Y., Yan, Q., & Jiang, Z. (2014). Biochemical characterization of a novel L-asparaginase with low glutaminase activity from Rhizomucor miehei and its application in food safety and leukemia treatment. Applied and Environmental Microbiology, 80(5), 1561–1569. https://doi.org/10.1128/AEM.03523-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shi, R., Liu, Y., Mu, Q., Jiang, Z., & Yang, S. (2017). Biochemical characterization of a novel L-asparaginase from Paenibacillus barengoltzii being suitable for acrylamide reduction in potato chips and mooncakes. International Journal of Biological Macromolecules, 96, 93–99. https://doi.org/10.1016/j.ijbiomac.2016.11.115

    Article  CAS  PubMed  Google Scholar 

  53. El-Naggar, N. E. A., & El-Shweihy, N. M. (2020). Bioprocess development for L-asparaginase production by Streptomyces rochei, purification and in-vitro efficacy against various human carcinoma cell lines. Scientific Reports, 10(1), 1–21. https://doi.org/10.1038/s41598-020-64052-x

    Article  CAS  Google Scholar 

  54. Mazloum-Ravasan, S., Madadi, E., Mohammadi, A., Mansoori, B., Amini, M., Mokhtarzadeh, A., Baradaran, B., & Darvishi, F. (2021). Yarrowia lipolytica L-asparaginase inhibits the growth and migration of lung (A549) and breast (MCF7) cancer cells. International Journal of Biological Macromolecules, 170, 406–414. https://doi.org/10.1016/j.ijbiomac.2020.12.141

    Article  CAS  PubMed  Google Scholar 

  55. Ghasemi, A., Asad, S., Kabiri, M., & Dabirmanesh, B. (2017). Cloning and characterization of Halomonas elongata L-asparaginase, a promising chemotherapeutic agent. Applied Microbiology and Biotechnology, 101(19), 7227–7238. https://doi.org/10.1007/s00253-017-8456-5

    Article  CAS  PubMed  Google Scholar 

  56. El-Naggar, N. E. A., Moawad, H., El-Shweihy, N. M., El-Ewasy, S. M., Elsehemy, I. A., & Abdelwahed, N. A. M. (2019). Process development for scale-up production of a therapeutic L-asparaginase by Streptomyces brollosae NEAE-115 from shake flasks to bioreactor. Scientific Reports, 9(1), 1–18. https://doi.org/10.1038/s41598-019-49709-6

    Article  CAS  Google Scholar 

  57. da Rocha, W. R. V., Costa-Silva, T. A., Agamez-Montalvo, G. S., Feitosa, V. A., Machado, S. E. F., de Souza Lima, G. M., Pessora-Jr, A., & Alves, H. S. (2019). Screening and optimizing fermentation production of l-asparaginase by Aspergillus terreus strain S-18 isolated from the Brazilian Caatinga Biome. Journal of Applied Microbiology, 126(5), 1426–1437. https://doi.org/10.1111/jam.14221

    Article  CAS  PubMed  Google Scholar 

  58. da Cunha, M. C., Silva, L. C., Sato, H. H., & de Castro, R. J. S. (2018). Using response surface methodology to improve the L-asparaginase production by Aspergillus niger under solid-state fermentation. Biocatalysis and Agricultural Biotechnology, 16, 31–36. https://doi.org/10.1016/j.bcab.2018.07.018

    Article  Google Scholar 

  59. Meghavarnam, A. K., & Janakiraman, S. (2017). Solid state fermentation: An effective fermentation strategy for the production of L-asparaginase by Fusarium culmorum (ASP-87). Biocatalysis and Agricultural Biotechnology, 11, 124–130. https://doi.org/10.1016/j.bcab.2017.06.001

    Article  Google Scholar 

  60. Uppuluri, K. B., Dasari, R. K. V. R., Sajja, V., Jacob, A. S., & Reddy, D. S. R. (2013). Optimization of L-asparaginase production by isolated Aspergillus niger C4 from sesame (black) oil cake under SSF using Box-Behnken design in column bioreactor. International Journal of Chemical Reactor Engineering, 11(1), 103–109. https://doi.org/10.1515/ijcre-2012-0064

    Article  Google Scholar 

  61. Doriya, K., & Kumar, D. S. (2018). Solid state fermentation of mixed substrate for L-asparaginase production using tray and in-house designed rotary bioreactor. Biochemical Engineering Journal, 138, 188–196. https://doi.org/10.1016/j.bej.2018.07.024

    Article  CAS  Google Scholar 

  62. Barros, T., Brumano, L., Freitas, M., Pessoa Junior, A., Parachin, N., & Magalhães, P. O. (2021). Development of processes for recombinant L-asparaginase II production by Escherichia coli Bl21 (De3): From shaker to bioreactors. Pharmaceutics, 13(1), 1–15. https://doi.org/10.3390/pharmaceutics13010014

    Article  CAS  Google Scholar 

  63. Feng, Y., Liu, S., Jiao, Y., Gao, H., Wang, M., Du, G., & Chen, J. (2017). Enhanced extracellular production of L-asparaginase from Bacillus subtilis 168 by B. subtilis WB600 through a combined strategy. Applied Microbiology and Biotechnology, 101(4), 1509–1520. https://doi.org/10.1007/s00253-016-7816-x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Indrashil University for providing financial support and infrastructural facilities to carry out present research work. AP would like to acknowledge Education Department, Government Gujarat, for Scheme of Developing High Quality Research (SHODH)-2021 fellowship (Ref No. 202001420005).

Author information

Authors and Affiliations

Authors

Contributions

Payal Patel: literature review, data curation, formal analysis, methodology, writing – original draft. Ajay Patel: data curation, methodology. Reena Agarwal-Rajput: resources, data curation, methodology. Rakesh Rawal: resources, data curation, methodology. Bharti Dave: writing- review and editing. Haren Gosai: conceptualization, data curation, methodology, supervision, writing – review &editing, validation, and resources.

Corresponding author

Correspondence to Haren Gosai.

Ethics declarations

Ethics Approval

This article does not contain any studies performed on human participants or animals.

Consent to Participate

Not applicable.

Consent to Publish

All authors accept that the copyright of the manuscript will be transferred to the journal upon acceptance for publication.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• LA from marine-derived Bacillus licheniformis had specific activity of 7707 U/mg.

• Purified LA proved to be thermotolerant and resistant to temperature up to 80 °C.

• pH stability was exhibited by purified LA at pH 3.0–10.

• LA was resistant to high salinity concentration of 3–16%.

• IC50 values of less than 0.2 U/mL was observed against cancer cell lines.

• Antibacterial activity against Vibrio cholerae and Enterococcus faecalis was detected.

• Economical bench-scale production of LA using moringa leaves.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, P., Patel, A., Agarwal-Rajput, R. et al. Characterization, Anti-proliferative Activity, and Bench-Scale Production of Novel pH-Stable and Thermotolerant L-Asparaginase from Bacillus licheniformis PPD37. Appl Biochem Biotechnol 195, 3122–3141 (2023). https://doi.org/10.1007/s12010-022-04281-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04281-0

Keywords

Navigation