Skip to main content

Advertisement

Log in

Nanotechnology: the Alternative and Efficient Solution to Biofouling in the Aquaculture Industry

  • Review Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Biofouling is a global issue in aquaculture industries. It adversely affects marine infrastructure (ship’s hulls, mariculture cages and nets, underwater pipes and filters, building materials, probes, and sensor devices). The estimated cost of managing marine biofouling accounts for 5–10% of production cost. Non-toxic foul-release coating and biocide-based coating are the two current approaches. Recent innovation and development of a surface coating with nanoparticles such as photocatalytic zinc oxide nanocoating on fishing nets, copper oxide nanocoating on the water-cooling system, and silver nanoparticle coating to inhibit microalgal adhesion on submerged surfaces under natural light (photoperiod) could present meaningful anti-biofouling application. Nanocoating of zinc, copper, and silver oxide is an environmentally friendly surface coating strategy that avoid surface adhesion of bacteria, diatoms, algal, protozoans, and fungal species. Such nanocoating could also provide a solution to strains tolerant to Cu, Zn, and Ag. This draft of the special issue demonstrates the anti-biofouling potential of various metal and metal oxide nanoparticle coating to combat aquaculture industry biofouling problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Dataset(s) derived from public resources and made available with the article in the references.

References

  1. Lane, A., & Willemsen, P. (2004). The collaborative effort looks into biofouling. Fish Farming International, 44, 34–35. https://doi.org/10.1080/08927014.2019.1640214

    Article  CAS  Google Scholar 

  2. Clare, A. S. (1998). Towards non-toxic antifouling. Journal of Marine Biotechnology., 6, 36.

    Google Scholar 

  3. Sathe, P., Myint, M. T. Z., Dobretsov, S., & Dutta, J. (2016). Removal and regrowth inhibition of microalgae using visible light photocatalysis with ZnO nanorods: A green technology. Separation and Purification Technology, 162, 61–67. https://doi.org/10.1016/j.seppur.2016.02.007

    Article  CAS  Google Scholar 

  4. Al-Fori, M., Dobretsov, S., Myint, M. T. Z., & Dutta, J. (2014). Antifouling properties of zinc oxide nanorod coatings. Biofouling, 30(7), 871–882. https://doi.org/10.1080/08927014.2014.942297

    Article  CAS  PubMed  Google Scholar 

  5. Dong, T. G., Dong, S., Catalano, C., Moore, R., Liang, X., & Mekalanos, J. J. (2015). Generation of reactive oxygen species by lethal attacks from competing microbes. Proceedings of the National Academy of Sciences, 112(7), 2181–2186. https://doi.org/10.1073/pnas.1425007112

    Article  CAS  Google Scholar 

  6. Raveendran, T. V., & Mol, V. L. (2009). Natural product antifoulants. Current Science, 508–520. https://www.jstor.org/stable/24111879

  7. McDowell, R. E., Amsler, C. D., Dickinson, D. A., McClintock, J. B., & Baker, B. J. (2014). Reactive oxygen species and the Antarctic macroalgal wound response. Journal of Phycology, 50(1), 71–80. https://doi.org/10.1111/jpy.12127

    Article  CAS  PubMed  Google Scholar 

  8. Callow, J. A., & Callow, M. E. (2011). Trends in the development of environmentally friendly fouling-resistant marine coatings. Nature Communications, 2(1), 1–10. https://doi.org/10.1038/ncomms1251

    Article  CAS  Google Scholar 

  9. Carl, C., Poole, A. J., Vucko, M. J., Williams, M. R., Whalan, S., & de Nys, R. (2012). Enhancing the efficacy of fouling-release coatings against fouling by Mytilus galloprovincialis using nanofillers. Biofouling, 28(10), 1077–1091. https://doi.org/10.1080/08927014.2012.728588

    Article  CAS  PubMed  Google Scholar 

  10. Wang, Z., Von Dem Bussche, A., Kabadi, P. K., Kane, A. B., & Hurt, R. H. (2013). Biological and environmental transformations of copper-based nanomaterials. ACS Nano, 7(10), 8715–8727. https://doi.org/10.1021/nn403080y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Beech, I. B., & Sunner, J. (2004). Biocorrosion: Towards understanding interactions between biofilms and metals. Current Opinion in Biotechnology, 15(3), 181–186. https://doi.org/10.1016/j.copbio.2004.05.001

    Article  CAS  PubMed  Google Scholar 

  12. Gollasch, S. (2006). Assessment of the introduction potential of aquatic alien species in new environments. Evaluation and Control of Biological Invasion Risks, 88–91.

  13. Yebra, D. M., Kiil, S., & Dam-Johansen, K. (2004). Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings. Progress in Organic Layers, 50(2), 75–104. https://doi.org/10.1016/j.porgcoat.2003.06.001

    Article  CAS  Google Scholar 

  14. Maréchal, J. P., & Hellio, C. (2009). Challenges for the development of new non-toxic antifouling solutions. International Journal of Molecular Sciences, 10(11), 4623–4637. https://doi.org/10.3390/ijms10114623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Venkatesan, P., Palaniswamy, N., & Rajagopal, K. (2006). Corrosion performance of coated reinforcing bars embedded in concrete and exposed to the natural marine environment. Progress in Organic Coatings, 56(1), 8–12. https://doi.org/10.1016/j.porgcoat.2006.01.011

    Article  CAS  Google Scholar 

  16. Nwabor, O. F., Singh, S., Wunnoo, S., Lerwittayanon, K., & Voravuthikunchai, S. P. (2021).Facile deposition of biogenic silver nanoparticles on porous alumina discs, an efficient antimicrobial, antibiofilm, and antifouling strategy for functional contact surfaces. Biofouling, 1–17 https://doi.org/10.1080/08927014.2021.1934457

  17. Bressy, C., NGuyen, M. N., Tanguy, B., & Margaillan, A. (2010). Poly (trialkylsilyl methacrylate) s A family of hydrolysable polymers with tuneable erosion profiles. Polymer Degradation and Stability, 95(7), 1260–1268. https://doi.org/10.1016/j.polymdegradstab.2010.03.017

    Article  CAS  Google Scholar 

  18. Hawkins, M. L., Faÿ, F., Réhel, K., Linossier, I., & Grunlan, M. A. (2014). Bacteria and diatom resistance of silicones modified with PEO-silane amphiphiles. Biofouling, 30(2), 247258. https://doi.org/10.1080/08927014.2013.862235

    Article  CAS  Google Scholar 

  19. Baier, R. E. (2006). Surface behaviour of biomaterials: The theta surface for biocompatibility. Journal of Materials Science: Materials in Medicine, 17(11), 1057–1062. https://doi.org/10.1007/s10856-006-0444-8

    Article  CAS  PubMed  Google Scholar 

  20. Sommer, S., Ekin, A., Webster, D. C., Stafslien, S. J., Daniels, J., VanderWal, L. J., ... & Callow, J. A. (2010). A preliminary study on siloxane- polyurethane coatings’ properties and fouling-release performance prepared from poly (dimethylsiloxane)(PDMS) macromers. Biofouling26(8), 961–972. https://doi.org/10.1080/08927014.2010.531272

  21. Galli, G., & Martinelli, E. (2017). Amphiphilic polymer platforms: Surface engineering of films for marine antibiofouling. Macromolecular Rapid Communications, 38(8), 1600704. https://doi.org/10.1002/marc.201600704

    Article  CAS  Google Scholar 

  22. Krishnan, S., Ayothi, R., Hexemer, A., Finlay, J. A., Sohn, K. E., Perry, R., ... & Fischer, D. A. (2006). Anti-biofouling properties of comblike block copolymers with amphiphilic side chains. Langmuir22(11), 5075–5086. https://doi.org/10.1021/la052978l

  23. Hearin, J., Hunsucker, K. Z., Swain, G., Stephens, A., Gardner, H., Lieberman, K., & Harper, M. (2015). Analysis of long-term mechanical grooming on large-scale test panels coated with an antifouling and a fouling-release coating. Biofouling, 31(8), 625–638. https://doi.org/10.1080/08927014.2015.1081687

    Article  PubMed  Google Scholar 

  24. Wake, H., Takahashi, H., Takimoto, T., Takayanagi, H., Ozawa, K., Kadoi, H., ... & Matsunaga, T. (2006). Development of an electrochemical antifouling system for seawater cooling pipelines of power plants using titanium. Biotechnology and Bioengineering95(3), 468–473. https://doi.org/10.1002/bit.21022

  25. Schumacher, J. F., Aldred, N., Callow, M. E., Finlay, J. A., Callow, J. A., Clare, A. S., & Brennan, A. B. (2007). Species-specific engineered antifouling topographies: Correlations between the settlement of algal zoospores and barnacle cyprids. Biofouling, 23(5), 307–317. https://doi.org/10.1080/08927010701393276

    Article  PubMed  Google Scholar 

  26. Bers, A. V., & Wahl, M. (2004). The influence of natural surface microtopographies on fouling. Biofouling, 20(1), 43–51. https://doi.org/10.1080/08927010410001655533

    Article  CAS  PubMed  Google Scholar 

  27. Qian, P. Y., Xu, Y., & Fusetani, N. (2009). Natural products as antifouling compounds: Recent progress and future perspectives. Biofouling, 26(2), 223–234. https://doi.org/10.1080/08927010903470815

    Article  CAS  Google Scholar 

  28. Wang, K. L., Wu, Z. H., Wang, Y., Wang, C. Y., & Xu, Y. (2017). Mini-review: Antifouling natural products from marine microorganisms and their synthetic analogues. Marine Drugs, 15(9), 266. https://doi.org/10.3390/md15090266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Natalio, F., André, R., Hartog, A. F., Stoll, B., Jochum, K. P., Wever, R., & Tremel, W. (2012). Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation. Nature Nanotechnology, 7(8), 530–535. https://doi.org/10.1038/nnano.2012.91

    Article  CAS  PubMed  Google Scholar 

  30. Ganguli, R., Mehrotra, V., & Dunn, B. (2009). Bioinspired living skins for fouling mitigation. Innovative Materials and Structures, 18(10), 104027. https://doi.org/10.1088/0964-1726/18/10/104027

    Article  CAS  Google Scholar 

  31. Bondarenko, O., Ivask, A., Käkinen, A., Kurvet, I., & Kahru, A. (2013). Particle-cell contact enhances the antibacterial activity of silver nanoparticles. PLoS One, 8(5), e64060. https://doi.org/10.1371/journal.pone.0064060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N. H. M., Ann, L. C., Bakhori, S. K. M., ... & Mohamad, D. (2015). Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-micro Letters7(3), 219–242. https://doi.org/10.1007/s40820-015-0040-x

  33. Roy, R., Das, M., & Dwivedi, P. D. (2015). Toxicological mode of action of ZnO nanoparticles: Impact on immune cells. Molecular Immunology, 63(2), 184–192. https://doi.org/10.1016/j.molimm.2014.08.001

    Article  CAS  PubMed  Google Scholar 

  34. Emamifar, A., Kadivar, M., Shahedi, M., & Soleimanian-Zad, S. (2010). Evaluation of nanocomposite packaging containing Ag and ZnO on the shelf life of fresh orange juice. Innovative Food Science & Emerging Technologies, 11(4), 742–748. https://doi.org/10.1016/j.ifset.2010.06.003

    Article  CAS  Google Scholar 

  35. Sathe, P., Laxman, K., Myint, M. T. Z., Dobretsov, S., Richter, J., & Dutta, J. (2017). Bioinspired nanocoatings for biofouling prevention by photocatalytic redox reactions. Scientific Reports, 7(1), 1–12. https://doi.org/10.1038/s41598-017-03636-6

    Article  CAS  Google Scholar 

  36. Sathe, P., Richter, J., Myint, M. T. Z., Dobretsov, S., & Dutta, J. (2016). Self-decontaminating photocatalytic zinc oxide nanorod coatings for prevention of marine microfouling: A mesocosm study. Biofouling, 32(4), 383–395. https://doi.org/10.1080/08927014.2016.1146256

    Article  CAS  PubMed  Google Scholar 

  37. Xie, Y., He, Y., Irwin, P. L., Jin, T., & Shi, X. (2011). Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Applied and Environment Microbiology, 77, 2325–2331. https://doi.org/10.1128/AEM.03414-12

    Article  CAS  Google Scholar 

  38. Franklin, N. M., Rogers, N. J., Apte, S. C., Batley, G. E., Gadd, G. E., & Casey, P. S. (2007). Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriellasubcapitata): The importance of particle solubility. Environmental Science & Technology, 41(24), 8484–8490. https://doi.org/10.1021/es071445r

    Article  CAS  Google Scholar 

  39. Gladis, F., Eggert, A., Karsten, U., & Schumann, R. (2010). Prevention of biofilm growth on artificial surfaces: Evaluation of the antialgal activity of two biocides and photocatalytic nanoparticles. Biofouling, 26(1), 89–101. https://doi.org/10.1080/08927010903278184

    Article  CAS  PubMed  Google Scholar 

  40. Awasthi, A., Sharma, P., Jangir, L., Awasthi, G., Awasthi, K. K., & Awasthi, K. (2020). Dose-dependent enhanced antibacterial effects and reduced biofilm activity against Bacillus subtilis in the presence of ZnO nanoparticles. Materials Science and Engineering: C, 113, 111021. https://doi.org/10.1016/j.msec.2020.111021

    Article  CAS  PubMed  Google Scholar 

  41. Ren, J., Han, P., Wei, H., & Jia, L. (2014). Fouling-resistant behavior of silver nanoparticle-modified surfaces against the bioadhesion of microalgae. ACS Applied Materials & Interfaces, 6(6), 3829–3838. https://doi.org/10.1021/am500292y

    Article  CAS  Google Scholar 

  42. Macias-Montero, M., Borras, A., Saghi, Z., Romero-Gomez, P., Sanchez-Valencia, J. R., Gonzalez, J. C., ... & Gonzalez-Elipe, A. R. (2012). Superhydrophobic supported Ag-NPs@ ZnO-nanorods with photoactivity in the visible range. Journal of Materials Chemistry22(4), 1341–1346. https://doi.org/10.1039/C1JM13512K

  43. Ma, P. Y., Wu, Y., Fu, Z. Y., & Wang, W. M. (2011). Wet-chemical synthesis and enhanced photocatalytic performance of ZnO/Ag micro hybrid material. In Advanced Materials Research (Vol. 328, pp. 1139–1142). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/AMR.328-330.1139

  44. Michael, R. J. V., Sambandam, B., Muthukumar, T., Umapathy, M. J., & Manoharan, P. T. (2014). Spectroscopic dimensions of silver nanoparticles and clusters in ZnO matrix and their role in bioinspired antifouling and photocatalysis. Physical Chemistry Chemical Physics, 16(18), 8541–8555. https://doi.org/10.1039/C4CP00169A

    Article  CAS  PubMed  Google Scholar 

  45. Alishahi, A., & Aïder, M. (2012). Applications of chitosan in the seafood industry and aquaculture: A review. Food and Bioprocess Technology, 5(3), 817–830. https://doi.org/10.1007/s11947-011-0664-x

    Article  CAS  Google Scholar 

  46. Haldorai, Y., & Shim, J. J. (2013). Chitosan-zinc oxide hybrid composite for enhanced dye degradation and antibacterial activity. Composite Interfaces, 20(5), 365–377. https://doi.org/10.1080/15685543.2013.806124

    Article  CAS  Google Scholar 

  47. Yang, W. J., Neoh, K. G., Kang, E. T., Teo, S. L. M., & Rittschof, D. (2014). Polymer brush coatings for combating marine biofouling. Progress in Polymer Science, 39(5), 1017–1042. https://doi.org/10.1016/j.progpolymsci.2014.02.002

    Article  CAS  Google Scholar 

  48. Malini, M., Thirumavalavan, M., Yang, W. Y., Lee, J. F., & Annadurai, G. (2015). A versatile chitosan/ZnO nanocomposite with enhanced antimicrobial properties. International Journal of Biological Macromolecules, 80, 121–129. https://doi.org/10.1016/j.ijbiomac.2015.06.036

    Article  CAS  PubMed  Google Scholar 

  49. Younes, N., Pintus, G., Al-Asmakh, M., Rasool, K., Younes, S., Calzolari, S., ... & Nasrallah, G. K. (2019). “Safe” chitosan/zinc oxide nanocomposite has minimal organ-specific toxicity in early stages of zebrafish development. ACS Biomaterials Science & Engineering6(1), 38–47. https://doi.org/10.1021/acsbiomaterials.8b01144

  50. Baruah, S., Khan, M.N., Dutta, J. (2016). Perspectives and applications of nanotechnology. https://doi.org/10.1007/s10311-015-0542-2

  51. Mudunkotuwa, I. A., Rupasinghe, T., Wu, C. M., & Grassian, V. H. (2012). Dissolution of ZnO nanoparticles at circumneutral pH: A study of size effects in the presence and absence of citric acid. Langmuir, 28(1), 396–403. https://doi.org/10.1021/la203542x

    Article  CAS  PubMed  Google Scholar 

  52. Bora, T., Zoepfl, D., & Dutta, J. (2016). Importance of plasmonic heating on visible light driven photocatalysis of gold nanoparticle decorated zinc oxide nanorods. Scientific Reports, 6(1), 1–10. https://doi.org/10.1038/srep26913

    Article  CAS  Google Scholar 

  53. Bian, S. W., Mudunkotuwa, I. A., Rupasinghe, T., & Grassian, V. H. (2011). Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: Influence of pH, ionic strength, size, and adsorption of humic acid. Langmuir, 27(10), 6059–6068. https://doi.org/10.1021/la200570n

    Article  CAS  PubMed  Google Scholar 

  54. Wang, Q. Z., Chen, X. G., Liu, N., Wang, S. X., Liu, C. S., Meng, X. H., & Liu, C. G. (2006). Protonation constants of chitosan with different molecular weight and degree of deacetylation. Carbohydrate Polymers, 65(2), 194–201. https://doi.org/10.1016/j.carbpol.2006.01.001

    Article  CAS  Google Scholar 

  55. Jóźwiak, T., Filipkowska, U., Szymczyk, P., Rodziewicz, J., & Mielcarek, A. (2017). Effect of ionic and covalent crosslinking agents on properties of chitosan beads and sorption effectiveness of Reactive Black 5 dye. Reactive and Functional Polymers, 114, 58–74. https://doi.org/10.1016/j.reactfunctpolym.2017.03.007

    Article  CAS  Google Scholar 

  56. Azevedo, J., Tilley, S. D., Schreier, M., Stefik, M., Sousa, C., Araújo, J. P., ... & Mayer, M. T. (2016). Tin oxide as stable protective layer for composite cuprous oxide water-splitting photocathodes. Nano Energy24, 10–16. https://doi.org/10.1016/j.nanoen.2016.03.022

  57. Derikvandi, H., & Nezamzadeh-Ejhieh, A. (2017). A comprehensive study on electrochemical and photocatalytic activity of SnO2-ZnO/clinoptilolite nanoparticles. Journal of Molecular Catalysis A: Chemical, 426, 158–169. https://doi.org/10.1016/j.molcata.2016.11.011

    Article  CAS  Google Scholar 

  58. Kumar, S. G., & Rao, K. K. (2015). Zinc oxide based photocatalysis: Tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications. Rsc Advances, 5(5), 3306–3351. https://doi.org/10.1039/C4RA13299H

    Article  CAS  Google Scholar 

  59. Al-Naamani, L., Dobretsov, S., Dutta, J., & Burgess, J. G. (2017). Chitosan-zinc oxide nanocomposite coatings for the prevention of marine biofouling. Chemosphere, 168, 408–417. https://doi.org/10.1016/j.chemosphere.2016.10.033

    Article  CAS  PubMed  Google Scholar 

  60. Kumar, S., Ye, F., Mazinani, B., Dobretsov, S., & Dutta, J. (2021). Chitosan nanocomposite coatings containing chemically resistant ZnO–SnOx core–shell nanoparticles for photocatalytic antifouling. International Journal of Molecular Sciences, 22(9), 4513. https://doi.org/10.3390/ijms22094513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Divya Singh drafted the work. Nahid Rehman contributed to the conception or design of the work, and Anjana Pandey revised it critically for important intellectual content and approved the version to be published. All the authors agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Anjana Pandey.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, D., Rehman, N. & Pandey, A. Nanotechnology: the Alternative and Efficient Solution to Biofouling in the Aquaculture Industry. Appl Biochem Biotechnol 195, 4637–4652 (2023). https://doi.org/10.1007/s12010-022-04274-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04274-z

Keywords

Navigation