Skip to main content

Advertisement

Log in

The Therapeutic Potential of 4-Methoxy-1-methyl-2-oxopyridine-3-carbamide (MMOXC) Derived from Ricinine on Macrophage Cell Lines Infected with Methicillin-Resistant Strains of Staphylococcus aureus

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The incidences of methicillin-resistant strains of Staphylococcus aureus (MRSA) and their survival inside the macrophages are the major attributes of the relapsed infections after antimicrobial therapy, and it is a global problem. In this context, we have previously demonstrated 4-methoxy-1-methyl-2-oxopyridine-3-carbamide (MMOXC), a Ricinine derivative exhibiting anti-S. aureus and anti-biofilm characteristics by competitively inhibiting uridine monophosphate kinase (UMPK), UDP-N-acetyl muramyl pentapeptide ligase (Mur-F), and peptidyl deformylase, (PDF). In the present study, the stability of this competitive inhibitor MMOXC was evaluated by showing its ability to remain bound to the active sites of UMPK, Mur-F, and PDF even after increasing the incubation time, temperature, pH, and substrate concentration. On growing MRSA in fewer concentrations of MMOXC, these strains could not attain resistance to MMOXC and at the same time distinct reductions in the expression of UMPK, Mur-F, and PDF genes were noted. In vitro, infective models were generated by infecting MRSA to RAW 264.7 and human monocyte-derived macrophage (hMDM) cell lines. In these infected cell lines, in spite of increased nitric oxide synthase (NOS), NADPH–P450 reductase, superoxide dismutase, catalase, and peroxidase activities, the MRSA survived. At 640 µM/ml, the concentration of MMOXC penetrated into these infected cells and obliterated MRSA. While treating uninfected macrophage cell lines with MMOXC, no appreciable effect was observed indicating that MMOXC is the most suitable drug for the treatment of infections caused by MRSA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data presented in the manuscript are available from the corresponding author who can be contacted at a reasonable time. Some of the data which are cloning of UMPK, Mur-f, and PDF are available at GenBank (accession no: FJ415072, JX841309, and JX311310).

Abbreviations

ANAE :

Alpha-naphthyl acetate esterase

ATCC :

American Type Culture Collection

BHI :

Brain Heart Infusion

BP medium :

Baird Parker Medium

CA-MRSA :

Community-associated methicillin-resistant S. aureus

CAT :

Catalase

CFU :

Colony-forming unit

d -ala- d -ala :

D-alanine-d-alanine

DMEM :

Dulbecco’s modified Eagle medium

IPTG :

Isopropyl-β-d-thiogalactopyranoside

hMDMs :

Human monocyte-derived macrophages

I :

Inhibitor concentration

K i :

Inhibitor concentration required to achieve half maximum inhibition

Km :

Michaelis Menten constant

Km apparent :

Km of the reaction in the presence of an inhibitor

:

Macrophages

MDR :

Multidrug-resistant

MH agar :

Mueller Hinton Agar

MMOXC :

4-Methoxy,1-methyl-2-oxo-pyridine,3-carbomide

MOI :

Multiplicities of infection

MRSA :

Methicillin resistant Staphylococcus aureus

MSCRAMMs :

Microbial surface components recognizing adhesive matrix molecules

Mur-F :

UDP-N-acetyl muramyl pentapeptide ligase

MTT :

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NOS :

Nitric oxide synthase

LB media :

Luria Bertini media

PDF :

Peptidyl deformylase

RAW 264.7 :

Ralph and William’s cell line 264.7

RNS :

Reactive nitrogen species

ROS :

Reactive oxygen species

SOD :

Superoxide dismutase

THP-1 cell line :

Human monocytic cell line

UMPK :

Uridine monophosphate kinase

UMT :

UDP-N-acetyl muramic acid tripeptide

PBS :

Phosphate-buffered saline

PCR :

Polymerase chain reaction

PMA :

Phorbol 12-myristate 13-acetate

RPMI :

Roswell Park Memorial Institute

References

  1. Thomer, L., Schneewind, O., & Missiakas, D. (2016). Pathogenesis of Staphylococcus aureus bloodstream infections. Annual Review of Pathology: Mechanisms of Disease, 11, 343–364.

    Article  CAS  Google Scholar 

  2. Laupland, K. B., & Church, D. L. (2014). Population-based epidemiology and microbiology of community-onset bloodstream infections. Clinical Microbiology Reviews, 27(4), 647–664.

    Article  PubMed  PubMed Central  Google Scholar 

  3. DeLeo, F. R., Otto, M., Kreiswirth, B. N., & Chambers, H. F. (2010). Community-associated meticillin-resistant Staphylococcus aureus. Lancet, 375(9725), 1557–1568.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Turner, N. A., Sharma-Kuinkel, B. K., Maskarinec, S. A., Eichenberger, E. M., Shah, P. P., Carugati, M., Holland, T. L., & Fowler, V. G. (2019). Methicillin-resistant Staphylococcus aureus: An overview of basic and clinical research. Nature Reviews Microbiology, 17(4), 203–218.

  5. Somerville, G. A., & Proctor, R. A. (2009). At the crossroads of bacterial metabolism and virulence factor synthesis in Staphylococci. Microbiology and Molecular Biology Reviews, 73(2), 233–248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tuchscherr, L., Löffler, B., & Proctor, R. A. (2020). Persistence of Staphylococcus aureus: Multiple metabolic pathways impact the expression of virulence factors in small-colony variants (SCVs). Frontiers in Microbiology, 11, 1028.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rudra, P., & Boyd, J. M. (2020). Metabolic control of virulence factor production in Staphylococcus aureus. Current Opinion in Microbiology, 55, 81–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Foster, T. J., Geoghegan, J. A., Ganesh, V. K., & Höök, M. (2014). Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nature Reviews Microbiology, 12(1), 49–62.

  9. Sendi, P., & Proctor, R. A. (2009). Staphylococcus aureus as an intracellular pathogen: The role of small colony variants. Trends in Microbiology, 17(2), 54–58.

    Article  CAS  PubMed  Google Scholar 

  10. Proctor, R. A., Kriegeskorte, A., Kahl, B. C., Becker, K., Löffler, B., & Peters, G. (2014). Staphylococcus aureus Small Colony Variants (SCVs): A road map for the metabolic pathways involved in persistent infections. Frontiers in Cellular and Infection Microbiology, 4, 99.

  11. Thammavongsa, V., Kim, H. K., Missiakas, D., & Schneewind, O. (2015). Staphylococcal manipulation of host immune responses. Nature Reviews Microbiology, 13(9), 529–543.

  12. Torlak, E., Korkut, E., Uncu, A. T., & Şener, Y. (2017). Biofilm formation by Staphylococcus aureus isolates from a dental clinic in Konya, Turkey. Journal of Infection and Public Health, 10(6), 809–813.

    Article  PubMed  Google Scholar 

  13. Amaral, M. M., Coelho, L. R., Flores, R. P., Souza, R. R., Silva-Carvalho, M. C., Teixeira, L. A., Ferreira-Carvalho, B. T., & Figueiredo, A. M. (2005). The predominant variant of the Brazilian epidemic clonal complex of methicillin-resistant Staphylococcus aureus has an enhanced ability to produce biofilm and to adhere to and invade airway epithelial cells. Journal of Infectious Diseases, 192(5), 801–810.

    Article  CAS  PubMed  Google Scholar 

  14. Yeswanth, S., Chaudhury, A., & Sarma, P. (2017). Quantitative expression analysis of SpA, FnbA and Rsp genes in Staphylococcus aureus: Actively associated in the formation of biofilms. Current Microbiology, 74(12), 1394–1403.

    Article  CAS  PubMed  Google Scholar 

  15. Swarupa, V., Chaudhury, A., & Sarma, P. (2018). Iron enhances the peptidyl deformylase activity and biofilm formation in Staphylococcus aureus. 3 Biotech, 8(1), 32.

  16. Vudhya Gowrisankar, Y., Manne Mudhu, S., Pasupuleti, S. K., Suthi, S., Chaudhury, A., & Sarma, P. (2021). Staphylococcus aureus grown in anaerobic conditions exhibits elevated glutamine biosynthesis and biofilm units. Canadian Journal of Microbiology, 67(4), 323–331.

    Article  CAS  PubMed  Google Scholar 

  17. Koo, H., Allan, R. N., Howlin, R. P., Stoodley, P., & Hall-Stoodley, L. (2017). Targeting microbial biofilms: current and prospective therapeutic strategies. Nature Reviews Microbiology, 15, 740–755.

  18. Silva, M. T. (2010). When two is better than one: Macrophages and neutrophils work in concert in innate immunity as complementary and cooperative partners of a myeloid phagocyte system. Journal of Leukocyte Biology, 87(1), 93–106.

    Article  CAS  PubMed  Google Scholar 

  19. Bogdan, C., Röllinghoff, M., & Diefenbach, A. (2000). Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Current Opinion in Immunology, 12(1), 64–76.

    Article  CAS  PubMed  Google Scholar 

  20. Herb, M., & Schramm, M. (2021). Functions of ROS in macrophages and antimicrobial immunity. Antioxidants, 10(2), 313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hommes, J. W., & Surewaard, B. (2022). Intracellular habitation of Staphylococcus aureus: Molecular mechanisms and prospects for antimicrobial therapy. Biomedicines, 10(8), 1804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Geoghegan, J. A., & Foster, T. J. (2017). Cell wall-anchored surface proteins of Staphylococcus aureus: Many proteins, multiple functions. Current Topics in Microbiology and Immunology, 409, 95–120.

    CAS  PubMed  Google Scholar 

  23. Foster, T. J. (2019). The MSCRAMM family of cell-wall-anchored surface proteins of Gram-positive cocci. Trends in Microbiology, 27, 927–941.

    Article  CAS  PubMed  Google Scholar 

  24. Schilcher, K., & Horswill, A. R. (2020). Staphylococcal biofilm development: Structure, regulation, and treatment strategies. Microbiology and Molecular Biology Reviews, 84(3), e00026–19.

  25. Antimicrobial Resistance Collaborators. (2022). Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet, 399(10325), 629–655.

    Article  Google Scholar 

  26. Dey, J., Mahapatra, S. R., Raj, T. K., Kaur, T., Jain, P., Tiwari, A., Patro, S., Misra, N., & Suar, M. (2022). Designing a novel multi-epitope vaccine to evoke a robust immune response against pathogenic multidrug-resistant Enterococcus faecium bacterium. Gut Pathogens. 14(1), 21.

  27. Dey, J., Mahapatra, S. R., Lata, S., Patro, S., Misra, N., & Suar, M. (2022). Exploring Klebsiella pneumoniae capsule polysaccharide proteins to design multiepitope subunit vaccine to fight against pneumonia. Expert Review of Vaccines, 21(4), 569–587.

  28. Mahapatra, S. R., Dey, J., Kushwaha, G. S., Puhan, P., Mohakud, N. K., Panda, S. K., Lata, S., Misra, N., & Suar, M. (2021). Immunoinformatic approach employing modeling and simulation to design a novel vaccine construct targeting MDR efflux pumps to confer wide protection against typhoidal. Journal of Biomolecular Structure and Dynamics, 31, 1–13.

  29. Dey, J., Mahapatra, S. R., Patnaik, S., Lata, S., Kushwaha, G. S., Panda, R. K., Misra, N., & Suar, M. (2022). Molecular characterization and designing of a novel multiepitope vaccine construct against Pseudomonas aeruginosa.  International Journal of Peptide Research and Therapeutics, 28(2), 49.

  30. Mahapatra, S. R., Dey, J., Raj, T. K., Kumar, V., Ghosh, M., Verma, K. K., Kaur, T., Kesawat, M. S., Misra, N., & Suar, M. (2022). The potential of plant-derived secondary metabolites as novel drug candidate against Klebsiella pneumoniae: molecular docking and simulation investigation. South African Journal of Botany, 149, 789–797.

  31. Narang, P. K., Dey, J., Mahapatra, S. R., Ghosh, M., Misra, N., Suar, M., Kumar, V., & Raina, V. (2021). Functional annotation and sequence-structure characterization of a hypothetical protein putatively involved in carotenoid biosynthesis in microalgae. South African Journal of Botany, 141, 219–226.

  32. Narang, P. K., Dey, J., Mahapatra, S. R., Roy, R., Kushwaha, G. S., Misra, N., Suar, M., & Raina, V. (2021). Genome-based identification and comparative analysis of enzymes for carotenoid biosynthesis in microalgae. World Journal of Microbiology & Biotechnology, 38(1), 8.

  33. Arora, D. S., & Mahajan, H. (2019). Major phytoconstituents of Prunus cerasoides responsible for antimicrobial and antibiofilm potential against some reference strains of pathogenic bacteria and clinical isolates of MRSA. Applied Biochemistry and Biotechnology, 188(4), 1185–1204.

    Article  CAS  PubMed  Google Scholar 

  34. Sobral, R. G., Ludovice, A. M., de Lencastre, H., & Tomasz, A. (2006). Role of murF in cell wall biosynthesis: Isolation and characterization of a murF conditional mutant of Staphylococcus aureus. Journal of Bacteriology, 188(7), 2543–2553.

  35. Hari Prasad, O., Nanda Kumar, Y., Reddy, O. V., Chaudhary, A., & Sarma, P. V. (2012). Cloning, expression, purification and characterization of UMP kinase from Staphylococcus aureus. The Protein Journal, 31(4), 345–352.

  36. Mader, D., Liebeke, M., Winstel, V., Methling, K., Leibig, M., Götz, F., Lalk, M., & Peschel, A. (2013). Role of N-terminal protein formylation in central metabolic processes in Staphylococcus aureus. BMC Microbiology, 13, 7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Swarupa, V., Chaudhury, A., & Krishna Sarma, P. V. (2017). Effect of 4-methoxy 1-methyl 2-oxopyridine 3-carbamide on Staphylococcus aureus by inhibiting UDP-MurNAc-pentapeptide, peptidyl deformylase and uridine monophosphate kinase. Journal of Applied Microbiology, 122(3), 663–675.

    Article  CAS  PubMed  Google Scholar 

  38. El-Naggar, M. H., Elgaml, A., Abdel Bar, F. M., & Badria, F. A. (2019). Antimicrobial and antiquorum-sensing activity of Ricinus communis extracts and ricinine derivatives. Natural Product Research, 33(11), 1556–1562.

    Article  CAS  PubMed  Google Scholar 

  39. Janská, P., Knejzlík, Z., Perumal, A. S., Jurok, R., Tokárová, V., Nicolau, D. V., Štěpánek, F., & Kašpar, O. (2021). Effect of physicochemical parameters on the stability and activity of garlic alliinase and its use for in-situ allicin synthesis. PloS one, 16(3), e0248878.

    Article  PubMed  PubMed Central  Google Scholar 

  40. El-Shaheny, R. N., & Yamada, K. (2015). The influence of pH and temperature on the stability of flutamide. An HPLC investigation and identification of the degradation product by EI+-MS. RSC Advances, 5(5), 3206–3214.

    Article  CAS  Google Scholar 

  41. Bailey, J., Douglas, H., de Masino, L., Carvalho, L., & Argyrou, A. (2021). Human Mat2A uses an ordered kinetic mechanism and is stabilized but not regulated by Mat2B. Biochemistry, 60(47), 3621–3632.

    Article  CAS  PubMed  Google Scholar 

  42. Fraunholz, M., & Sinha, B. (2012). Intracellular Staphylococcus aureus: Live-in and let die. Frontiers in Cellular and Infection Microbiology, 2, 43.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Strobel, M., Pförtner, H., Tuchscherr, L., Völker, U., Schmidt, F., Kramko, N., Schnittler, H. J., Fraunholz, M. J., Löffler, B., Peters, G., & Niemann, S. (2016). Post-invasion events after infection with Staphylococcus aureus are strongly dependent on both the host cell type and the infecting S. aureus strain. Clinical Microbiology and Infection, 22(9), 799–809.

    Article  CAS  PubMed  Google Scholar 

  44. Tuchscherr, L., Heitmann, V., Hussain, M., Viemann, D., von Roth, J., Eiff, C., Peters, G., Becker, K., & Löffler, B. (2010). Staphylococcus aureus small-colony variants are adapted phenotypes for intracellular persistence. Journal of Infectious Diseases, 202(7), 1031–1040.

    Article  PubMed  Google Scholar 

  45. Tuchscherr, L., Medina, E., Hussain, M., Völker, W., Heitmann, V., Niemann, S., Holzinger, D., Roth, J., Proctor, R. A., Becker, K., Peters, G., & Löffler, B. (2011). Staphylococcus aureus phenotype switching: An effective bacterial strategy to escape host immune response and establish a chronic infection. EMBO Molecular Medicine, 3(3), 129–141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lu, H., & Tonge, P. J. (2010). Drug-target residence time: Critical information for lead optimization. Current Opinion in Chemical Biology, 14, 467–474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Koziel, J., Maciag-Gudowska, A., Mikolajczyk, T., Bzowska, M., Sturdevant, D. E., Whitney, A. R., Shaw, L. N., DeLeo, F. R., & Potempa, J. (2009). Phagocytosis of Staphylococcus aureus by macrophages exerts cytoprotective effects manifested by the upregulation of antiapoptotic factors. PLoS One, 4(4), e5210.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lacoma, A., Cano, V., Moranta, D., Regueiro, V., Domínguez-Villanueva, D., Laabei, M., González-Nicolau, M., Ausina, V., Prat, C., & Bengoechea, J. A. (2017). Investigating intracellular persistence of Staphylococcus aureus within a murine alveolar macrophage cell line. Virulence, 8(8), 1761–1775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Starr, T., Bauler, T. J., Malik-Kale, P., & Steele-Mortimer, O. (2018). The phorbol 12-myristate-13-acetate differentiation protocol is critical to the interaction of THP-1 macrophages with Salmonella Typhimurium. PloS One, 13(3), e0193601.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Tedesco, S., De-Majo, F., Kim, J., Trenti, A., Trevisi, L., Fadini, G. P., Bolego, C., Zandstra, P. W., Cignarella, A., & Vitiello, L. (2018). Convenience versus biological significance: are PMA-differentiated THP-1 cells a reliable substitute for blood-derived macrophages when studying in Vitro polarization? Frontiers in Pharmacology, 9, 71.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Carrasco-Pozo, C., Tan, K. N., & Avery, V. M. (2020). Hemin prevents increased glycolysis in macrophages upon activation: protection by microbiota-derived metabolites of polyphenols. Antioxidants, 9(11), 1109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Monahan, R. A., Dvorak, H. F., & Dvorak, A. M. (1981). Ultrastructural localization of nonspecific esterase activity in guinea pig and human monocytes, macrophages, and lymphocytes. Blood, 58(6), 1089–1099.

    Article  CAS  PubMed  Google Scholar 

  53. Amano, F., & Noda, T. (1995). Improved detection of nitric oxide radical (NO.) production in an activated macrophage culture with a radical scavenger, carboxy PTIO and Griess reagent. FEBS Letters, 368(3), 425–428.

    Article  CAS  PubMed  Google Scholar 

  54. Guengerich, F. P., Martin, M. V., Sohl, C. D., & Cheng, Q. (2009). Measurement of cytochrome P450 and NADPH-cytochrome P450 reductase. Nature Protocols, 4(9), 1245–1251.

    Article  CAS  PubMed  Google Scholar 

  55. Weydert, C. J., & Cullen, J. J. (2010). Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nature Protocols, 5(1), 51–66.

    Article  CAS  PubMed  Google Scholar 

  56. van Meerloo, J., Kaspers, G. J., & Cloos, J. (2011). Cell sensitivity assays: The MTT assay. Methods in Molecular Biology, 731, 237–245.

    Article  PubMed  Google Scholar 

  57. Weaver, A. J., Peters, T. R., Tripet, B., Van Vuren, A., Rakesh Lee, R. E., Copié, V., & Teintze, M. (2018). Exposure of methicillin-resistant Staphylococcus aureus to low levels of the antibacterial THAM-3ΦG generates a small colony drug-resistant phenotype. Scientific Reports, 8(1), 9850.

  58. Dey, S., & Bishayi, B. (2015). Killing of Staphylococcus aureus in murine macrophages by chloroquine used alone and in combination with ciprofloxacin or azithromycin. Journal of Inflammation Research, 8, 29–47.

    PubMed  PubMed Central  Google Scholar 

  59. Pidwill, G. R., Gibson, J. F., Cole, J., Renshaw, S. A., & Foster, S. J. (2021). The role of macrophages in Staphylococcus aureus infection. Frontiers in Immunology, 11, 620339.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We sincerely acknowledge the Sri Venkateswara Institute of Medical Sciences and University for providing facilities to carry out this work. This work forms part of the PhD work to be submitted to SVIMS University.

Funding

This work was supported by a Sri Balaji Arogya Vara Prasadini (SBAVP) scheme (Grant No. SBAVP/PhD/28 dated: 30th December 2019).

Author information

Authors and Affiliations

Authors

Contributions

PVGK conceived the idea and design of the experiments; SSR was involved in the development and optimization of experimental methods; DPK participated in the microbial experiments; SSR and PVGK participated in the analysis and interpretation of data; PVGK, SSR, and ACH worked together to prepare the manuscript and revised the manuscript.

Corresponding author

Correspondence to Potukuchi Venkata Gurunadha Krishna Sarma.

Ethics declarations

Ethical Approval

This study was cleared by the institutional ethics committee (IEC. No: 960, dated: 18 September, 2019).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suthi, S., Gopi, D., Chaudhary, A. et al. The Therapeutic Potential of 4-Methoxy-1-methyl-2-oxopyridine-3-carbamide (MMOXC) Derived from Ricinine on Macrophage Cell Lines Infected with Methicillin-Resistant Strains of Staphylococcus aureus. Appl Biochem Biotechnol 195, 2843–2862 (2023). https://doi.org/10.1007/s12010-022-04269-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04269-w

Keywords

Navigation