Skip to main content
Log in

Hierarchically Structured CA@ZIF-8 Biohybrids for Carbon Dioxide Mineralization

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Carbonic anhydrase (CA) is a powerful biocatalyst for carbon dioxide (CO2) mineralization, of which immobilization is usually used for maintaining its catalytic activity against harsh external stimuli. However, the incorporated materials for CA immobilization would commonly increase the internal diffusion resistance during the catalytic process, thereby decreasing the catalytic efficiency. In our study, poly-l-glutamic acid (PLGA) as the structure regulator was used to induce the synthesis of CA@zeolitic imidazolate framework-8 (CA@ZIF-8) biohybrids. The introduction of PLGA that could coordinate with Zn2+ interfered the crystallization of ZIF-8, thereby changing the morphological structure of CA@ZIF-8 biohybrids. With the increase of PLGA amount from 0 to 60 mg, PLGA(x)-CA@ZIF-8 biohybrids were gradually transformed from a dodecahedron structure to a 3D lamellar nano-flower structure, which caused elevated exposed surface area. Accordingly, the loading ratio was increased from 34.6 to 49.8 mg gcat−1, while the catalytic activity was elevated from 20.6 to 23.4%. The CO2 conversion rate was enhanced by nearly two folds compared to PLGA(0)-CA@ZIF-8 under the optimized condition. The final CaCO3 yield could reach 5.6 mg mgcat−1, whereas the reaction system could remain above 80% of the initial reaction activity after 8 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Berg, I. A. (2011). Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Applied and Environment Microbiology, 77(6), 1925–1936.

    Article  CAS  Google Scholar 

  2. Hermida-Carrera, C., Kapralov, M. V., & Galmes, J. (2016). Rubisco catalytic properties and temperature response in crops. Plant Physiology, 171(4), 2549–2561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Verma, M., Bhaduri, G. A., Kumar, V. S. P., & Deshpande, P. A. (2021). Biomimetic catalysis of CO2 hydration: A materials perspective. Industrial and Engineering Chemistry Research, 60(13), 4777–4793.

    Article  CAS  Google Scholar 

  4. Sheldon, R. A. (2012). Fundamentals of green chemistry: Efficiency in reaction design. Chemical Society Reviews, 41(4), 1437–1451.

    Article  CAS  PubMed  Google Scholar 

  5. Liang, S., Wu, X. L., Xiong, J., Zong, M. H., & Lou, W. Y. (2020). Metal-organic frameworks as novel matrices for efficient enzyme immobilization: An update review. Coordination Chemistry Reviews, 406, 213149.

    Article  CAS  Google Scholar 

  6. Schmid, A., Dordick, J. S., Hauer, B., Kiener, A., Wubbolts, M., & Witholt, B. (2001). Industrial biocatalysis today and tomorrow. Nature, 409(6817), 258–268.

    Article  CAS  PubMed  Google Scholar 

  7. Behnood, A. (2019). Application of rejuvenators to improve the rheological and mechanical properties of asphalt binders and mixtures: A review. Journal of Cleaner Production, 231, 171–182.

    Article  Google Scholar 

  8. Chiu, S. Y., Kao, C. Y., Chen, C. H., Kuan, T. C., Ong, S. C., & Lin, C. S. (2008). Reduction of CO2 by a high-density culture of Chlorella sp in a semicontinuous photobioreactor. Bioresource Technology, 99(9), 3389–3396.

    Article  CAS  PubMed  Google Scholar 

  9. Lian, X., Fang, Y., Joseph, E., Wang, Q., Li, J., Banerjee, S., Lollar, C., Wang, X., & Zhou, H. C. (2017). Enzyme-MOF (metal-organic framework) composites. Chemical Society Reviews, 46(11), 3386–3401.

    Article  CAS  PubMed  Google Scholar 

  10. Illanes, A., Cauerhff, A., Wilson, L., & Castro, G. R. (2012). Recent trends in biocatalysis engineering. Bioresource Technology, 115, 48–57.

    Article  CAS  PubMed  Google Scholar 

  11. Zhong, X., Xia, H., Huang, W. Q., Li, Z. X., & Jiang, Y. B. (2020). Biomimetic metal-organic frameworks mediated hybrid multi-enzyme mimic for tandem catalysis. Chemical Engineering Journal, 381(9), 122758.

    Article  CAS  Google Scholar 

  12. Wang, W., Wen, P., Xu, K., Zheng, R., & Zheng, Y. (2019). Catalysis of enzymes under industrial environment and their adaptive modifications: A review. Sheng Wu Gong Cheng Xue Bao, 35(10), 1857–1869.

    CAS  PubMed  Google Scholar 

  13. Thangaraj, B., & Solomon, P. R. (2019). Immobilization of lipases - A review Part I: Enzyme Immobilization. ChemBioEng Reviews, 6(5), 157–166.

    Article  CAS  Google Scholar 

  14. Nguyen, H. H., & Kim, M. (2017). An overview of techniques in enzyme immobilization. Applied Science and Convergence Technology, 26(6), 157–163.

    Article  Google Scholar 

  15. Zhang, B., Weng, Y., Xu, H., & Mao, Z. (2012). Enzyme immobilization for biodiesel production. Applied Microbiology and Biotechnology, 93(1), 61–70.

    Article  PubMed  Google Scholar 

  16. Bernal, C., Rodriguez, K., & Martinez, R. (2018). Integrating enzyme immobilization and protein engineering: An alternative path for the development of novel and improved industrial biocatalysts. Biotechnology Advances, 36(5), 1470–1480.

    Article  CAS  PubMed  Google Scholar 

  17. Xu, K. L., Chen, X. X., Zheng, R. C., & Zheng, Y. G. (2020). Immobilization of multi-enzymes on support materials for efficient biocatalysis. Frontiers in Bioengineering and Biotechnology, 8(17), 660.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hwang, E. T., & Lee, S. (2019). Multienzymatic cascade reactions via enzyme complex by immobilization. ACS Catalysis, 9(5), 4402–4425.

    Article  CAS  Google Scholar 

  19. Hernandez, K., & Fernandez-Lafuente, R. (2011). Control of protein immobilization: Coupling immobilization and site-directed mutagenesis to improve biocatalyst or biosensor performance. Enyzme and Microbial Technology, 48(2), 107–122.

    Article  CAS  Google Scholar 

  20. Cao, Y., Li, X., & Ge, J. (2021). Enzyme catalyst engineering toward the integration of biocatalysis and chemocatalysis. Trends in Biotechnology, 39(11), 1173–1183.

    Article  CAS  PubMed  Google Scholar 

  21. Li, X., Cao, Y., Luo, K., Zhang, L., Bai, Y., Xiong, J., Zare, R. N., & Ge, J. (2022). Cooperative catalysis by a single-atom enzyme-metal complex. Nature Communications, 13(1), 2189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mohamad, N. R., Marzuki, N. H. C., Buang, N. A., Huyop, F., & Wahab, R. A. (2015). An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnology and Biotechnological Equipment, 29(2), 205–220.

    Article  CAS  PubMed  Google Scholar 

  23. Liu, D. M., Chen, J., & Shi, Y. P. (2018). Advances on methods and easy separated support materials for enzymes immobilization. Trac-Trends in Analytical Chemistry, 102, 332–342.

    Article  CAS  Google Scholar 

  24. Meng, J., Liu, X., Niu, C., Pang, Q., Li, J., Liu, F., Liu, Z., & Mai, L. (2020). Advances in metal-organic framework coatings: Versatile synthesis and broad applications. Chemical Society Reviews, 49(10), 3142–3186.

    Article  CAS  PubMed  Google Scholar 

  25. Konnerth, H., Matsagar, B. M., Chen, S. S., Prechtl, M. H. G., Shieh, F. K., & Wu, K. C. W. (2020). Metal-organic framework (MOF)-derived catalysts for fine chemical production. Coordination Chemistry Reviews, 416, 213319.

    Article  CAS  Google Scholar 

  26. Drout, R. J., Robison, L., & Farha, O. K. (2019). Catalytic applications of enzymes encapsulated in metal-organic frameworks. Coordination Chemistry Reviews, 381, 151–160.

    Article  CAS  Google Scholar 

  27. Majewski, M. B., Howarth, A. J., Li, P., Wasielewski, M. R., Hupp, J. T., & Farha, O. K. (2017). Enzyme encapsulation in metal-organic frameworks for applications in catalysis. CrystEngComm, 19(29), 4082–4091.

    Article  CAS  Google Scholar 

  28. Sun, Y., Shi, J., Zhang, S., Wu, Y., Mei, S., Qian, W., & Jiang, Z. (2019). Hierarchically porous and water-tolerant metal-organic frameworks for enzyme encapsulation. Industrial and Engineering Chemistry Research, 58(28), 12835–12844.

    Article  CAS  Google Scholar 

  29. Liang, J., Gao, S., Liu, J., Zulkifli, M. Y. B., Xu, J., Scott, J., Chen, V., Shi, J., Rawal, A., & Liang, K. (2021). Hierarchically porous biocatalytic MOF microreactor as a versatile platform towards enhanced multienzyme and cofactor-dependent biocatalysis. Angewandte Chemie International Edition, 60(10), 5421–5428.

    Article  CAS  PubMed  Google Scholar 

  30. Hu, Z., Deibert, B. J., & Li, J. (2014). Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chemical Society Reviews, 43(16), 5815–5840.

    Article  CAS  PubMed  Google Scholar 

  31. Li, J. R., Yu, J., Lu, W., Sun, L. B., Sculley, J., Balbuena, P. B., & Zhou, H. C. (2013). Porous materials with pre-designed single-molecule traps for CO2 selective adsorption. Nature Communications, 4, 1538.

    Article  PubMed  Google Scholar 

  32. Deng, J., Wang, K., Wang, M., Yu, P., & Mao, L. (2017). Mitochondria targeted nanoscale zeolitic imidazole framework-90 for ATP imaging in live cells. Journal of the American Chemical Society, 139(16), 5877–5882.

    Article  CAS  PubMed  Google Scholar 

  33. Huang, S., Kou, X., Shen, J., Chen, G., & Ouyang, G. F. (2020). “Armor-plating” enzymes with metal-organic frameworks (MOFs). Angewandte Chemie International Edition, 59(23), 8786–8798.

    Article  CAS  PubMed  Google Scholar 

  34. Sher, H., Ali, H., Rashid, M. H., Iftikhar, F., Saif-Ur, R., Nawaz, M. S., & Khan, W. S. (2019). Enzyme immobilization on metal-organic framework (MOF): Effects on thermostability and function. Protein and Peptide Letters, 26(9), 636–647.

    Article  CAS  PubMed  Google Scholar 

  35. Ye, N., Kou, X., Shen, J., Huang, S., Chen, G., & Ouyang, G. F. (2020). Metal-organic frameworks: A new platform for enzyme immobilization. ChemBioChem, 21(18), 2585–2590.

    Article  CAS  PubMed  Google Scholar 

  36. Liu, W. L., Yang, N. S., Chen, Y. T., Lirio, S., Wu, C. Y., Lin, C. H., & Huang, H. Y. (2015). Lipase-supported metal-organic framework bioreactor catalyzes warfarin synthesis. Chemistry--A European Journal, 21(1), 115–119.

    Article  CAS  PubMed  Google Scholar 

  37. Chen, L. Y., Luque, R., & Li, Y. W. (2017). Controllable design of tunable nanostructures inside metal-organic frameworks. Chemical Society Reviews, 46(15), 4614–4630.

    Article  CAS  PubMed  Google Scholar 

  38. Chen, G., Huang, S., Kou, X., Wei, S., Huang, S., Jiang, S., Shen, J., Zhu, F., & Ouyang, G. F. (2019). A convenient and versatile amino-acid-boosted biomimetic strategy for the nondestructive encapsulation of biomacromolecules within metal-organic frameworks. Angewandte Chemie International Edition, 58(5), 1463–1467.

    Article  CAS  PubMed  Google Scholar 

  39. Huang, S. M., Chen, G. S., Ye, N. R., Kou, X. X., Zhang, R., Shen, J., & Ouyang, G. F. (2020). Iron-mineralization-induced mesoporous metal-organic frameworks enable high-efficiency synergistic catalysis of natural/nanomimic enzymes. ACS Applied Materials & Interfaces, 12(51), 57343–57351.

    Article  CAS  Google Scholar 

  40. Chen, G. S., Huang, S. M., Kou, X. X., Zhu, F., & Ouyang, G. F. (2020). Embedding functional biomacromolecules within peptide-directed metal-organic framework (MOF) nanoarchitectures enables activity enhancement. Angewandte Chemie International Edition, 59(33), 13947–13954.

    Article  CAS  PubMed  Google Scholar 

  41. Cai, G. R., & Jiang, H. L. (2017). A modulator-induced defect-formation strategy to hierarchically porous metal-organic frameworks with high stability. Angewandte Chemie International Edition, 56(2), 563–567.

    Article  CAS  PubMed  Google Scholar 

  42. Ren, G. Y., Dong, F. D., Zhao, Z. Q., Li, K., & Lin, Y. Q. (2021). Structure defect tuning of metal-organic frameworks as a nanozyme regulatory strategy for selective online electrochemical analysis of uric acid. ACS Applied Materials, 13(44), 52987–52997.

    Article  CAS  Google Scholar 

  43. Li, L., Xiang, S. L., Cao, S. Q., Zhang, J. Y., Ouyang, G. F., Chen, L. P., & Su, C. Y. (2013). A synthetic route to ultralight hierarchically micro/mesoporous Al(III)-carboxylate metal-organic aerogels. Nature Communications, 4, 1774.

    Article  CAS  PubMed  Google Scholar 

  44. Hu, C., Bai, Y., Hou, M., Wang, Y., Wang, L., Cao, X., Chan, C. W., Sun, H., Li, W., Ge, J., & Ren, K. (2020). Defect-induced activity enhancement of enzyme-encapsulated metal-organic frameworks revealed in microfluidic gradient mixing synthesis. Science Advances, 6(5), 5785.

    Article  Google Scholar 

  45. Tsuruoka, T., Furukawa, S., Takashima, Y., Yoshida, K., Isoda, S., & Kitagawa, S. (2009). Nanoporous nanorods fabricated by coordination modulation and oriented attachment growth. Angewandte Chemie International Edition, 48(26), 4739–4743.

    Article  CAS  PubMed  Google Scholar 

  46. Nicolas, P., Lassalle, V. L., & Ferreira, M. L. (2017). Quantification of immobilized Candida Antarctica lipase B (CALB) using ICP-AES combined with Bradford method. Enyzme and Microbial Technology, 97, 97–103.

    Article  CAS  Google Scholar 

  47. Moorhead, D. L., & Weintraub, M. N. (2018). The evolution and application of the reverse Michaelis-Menten equation. Soil Biology & Biochemistry, 125, 261–262.

    Article  CAS  Google Scholar 

  48. Chen, L., & Xu, Q. (2019). Metal-organic framework composites for catalysis. Matter, 1(1), 57–89.

    Article  Google Scholar 

  49. Patel, R. N., Pandey, H. C., Pandeya, K. B., & Mukherjee, G. N. (1999). Mixed ligand complex formation of nickel(II), copper(II) and zinc(II) with some amino acids and imidazoles. Indian Journal of Chemistry Sect. A-Inorganic Bio-Inorganic Physical Theoritical & Analytical Chemistry, 38(8), 850–853.

    Google Scholar 

Download references

Funding

This work was supported by the National Key R&D Program of China (2022YFC2105900, 2021YFC2102300), National Natural Science Fund of China (22122809), Natural Science Fund of Tianjin (19JCYBJC19700), Open Funding Project of the State Key Laboratory of Biochemical Engineering (2020KF-06) and Tianjin Synthetic Biotechnology Innovation Capacity Improvement Project (TSBICIP-KJGG-003) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

Jiafu Shi, Zhuo Wang, and Yang Zhao contributed to the study conception and design. Formal analysis was finished by Yang Zhao, Zhuo Wang, Zhenhua Wu, Jiaxu Zhang, Boyu Zhang, Han Wang, and Zolfaghari Emameh Reza. Investigation, methodology, and data curation were performed by Zhuo Wang. Conceptualization, supervision, project administration, review, and editing were in charge of Jiafu Shi. The first draft of the manuscript was written by Zhuo Wang. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jiafu Shi.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 8.54 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Zhao, Y., Wu, Z. et al. Hierarchically Structured CA@ZIF-8 Biohybrids for Carbon Dioxide Mineralization. Appl Biochem Biotechnol 195, 2829–2842 (2023). https://doi.org/10.1007/s12010-022-04250-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04250-7

Keywords

Navigation