Skip to main content

Advertisement

Log in

Antifungal Activity of Camelus-Derived LFA-LFC Chimeric Peptide Gelatin Film and Effect on Oral Bacterial Biofilm

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The objective of this study was to construct lactoferrin (LFA-LFC) chimeric peptide gelatin drug-loaded fiber film by tissue engineering strategy, and study its bacteriostatic effect on oral pathogens (especially Candida albicans) and its effect on biofilm. First of all, LFA-LFC chitosan nanoparticles were prepared firstly, and then fluconazole gelatin (LF/GH/F) film loaded with LFA-LFC was prepared by electrospinning. Scanning electron microscope (SEM), mechanical strength, drug release, cytotoxicity, and real-time PCR were used to test the properties of the synthesized materials. SEM showed that there was the reticular structure for fiber film before and after cross-linking. LF/GH/F film had no obvious cytotoxicity, with good biocompatibility and drug release; real-time PCR and antibacterial test showed that the LF/GH/F film had good antibacterial activity. LF/GH/F film has a good inhibitory effect on oral pathogens, and its mechanism is related to biofilm. The antibacterial experiments of nanofiber membrane in vitro and the effect of bacterial biofilm were carried out. The effect of LF/GH/F on oral microbial flora structure was studied by fluorescence quantitative pest techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Melkoumov, A., Goupil, M., Louhichi, F., Raymond, M., De Repentigny, L., & Leclair, G. (2013). Nystatin nanosizing enhances in vitro and in vivo antifungal activity against Candida albicans. Journal of Antimicrobial Chemotherapy, 68(9), 2099–2105.

    Article  CAS  PubMed  Google Scholar 

  2. Akpan, A., & Morgan, R. (2002). Oral candidiasis. Postgraduate Medical Journal, 78(922), 455–459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Epstein, J. B., & Polsky, B. (1998). Oropharyngeal candidiasis: A review of its clinical spectrum and current therapies. Clinical Therapeutics, 20(1), 40–57.

    Article  CAS  PubMed  Google Scholar 

  4. Coronado-Castellote, L., & Jimenez-Soriano, Y. (2013). Clinical and microbiological diagnosis of oral candidiasis. Journal of Clinical and Experimental Dentistry, 5(5), e279–e286.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Samaranayake, L. P., Keung Leung, W., & Jin, L. (2009). Oral mucosal fungal infections. Periodontol., 49, 39–59.

    Google Scholar 

  6. Francesca, B., Ajello, M., Bosso, P., Morea, C., Andrea, P., Giovanni, A., & Piera, V. (2004). Both lactoferrin and iron influence aggregation and biofilm formation in Streptococcus mutans. BioMetals, 17(3), 271–278.

    Article  CAS  Google Scholar 

  7. Niu, J. Y., Yin, I. X., Wu, W. K., Li, Q., Mei, M. L., & Chu, C. H. (2020). Antimicrobial peptides for the prevention and treatment of dental caries: A concise review. Archives of Oral Biology, 122, 105022.

    Article  PubMed  Google Scholar 

  8. Ramakrishna, S., Fujihara, K., Teo, W., et al. (2005). Electrospinning process (pp. 135–137). In An Introduction to Electrospinning and Nanofibers; World Scientific Publishing.

    Google Scholar 

  9. Fu, W., Liu, Z., Feng, B., Hu, R., He, X., Wang, H., et al. (2014). Electrospun gelatin/PCL and collagen/PLCL scaffolds for vascular tissue engineering. International Journal of Nanomedicine, 9, 2335–2344.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Anjum, F., Agabalyan, N. A., Sparks, H. D., Rosin, N. L., Kallos, M. S., & Biernaskie, J. (2017). Biocomposite nanofiber matrices to support ECM remodeling by human dermal progenitors and enhanced wound closure. Science and Reports, 7, 10291.

    Article  Google Scholar 

  11. Lyu, X., Zhao, C., Hua, H., & Yan, Z. (2016). Efficacy of nystatin for the treatment of oral candidiasis: A systematic review and meta-analysis. Drug Design, Development and Therapy, 10, 1161–1171.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Goins, R. A., Ascher, D., Waecker, N., Arnold, J., & Moorefield, E. (2002). Comparison of fluconazole and nystatin oral suspensions for treatment of oral candidiasis in infants. Pediatric Infectious Disease, 21, 1165–1167.

    Article  Google Scholar 

  13. Huang, C., Hu, K., & Wei, Z. (2016). Comparison of cell behavior on pva/pva-gelatin electrospun nanofibers with random and aligned configuration. Science and Reports, 6, 37960.

    Article  CAS  Google Scholar 

  14. Lindenberg, M., Kopp, S., & Dressman, J. B. (2004). Classification of orally administered drugs on the World Health Organization model list of essential medicines according to the biopharmaceutics classification system. European Journal of Pharmaceutics and Biopharmaceutics, 58, 265–278.

    Article  PubMed  Google Scholar 

  15. Loftsson, T., Vogensen, S. B., Desbos, C., & Jansook, P. (2008). Carvedilol: Solubilization and cyclodextrin complexation: A technical note. AAPS Pharm. Sci. Tech., 9, 425–430.

    Article  CAS  Google Scholar 

  16. Van Luong, E., Grondahl, L., Chua, K. N., Leong, K. W., Nurcombe, V., & Cool, S. M. (2006). Controlled release of heparin from poly(e-caprolactone) electrospun fibers. Biomaterials, 27, 2042–2050.

    Article  Google Scholar 

  17. Madhaiyan, K., Sridhar, R., Sundarrajan, S., Venugopal, J. R., & Ramakrishna, S. (2013). Vitamin B12 loaded polycaprolactone nanofibers: A novel transdermal route for the water-soluble energy supplement delivery. International Journal of Pharmaceutics, 444, 70–76.

    Article  CAS  PubMed  Google Scholar 

  18. Meinel, A. J., Germershaus, O., Luhmann, T., Merkle, H. P., & Meinel, L. (2012). Electrospun matrices for localized drug delivery: Current technologies and selected biomedical applications. European Journal of Pharmaceutics and Biopharmaceutics, 81, 1–13.

    Article  CAS  PubMed  Google Scholar 

  19. Patel, V. F., Liu, F., & Brown, M. B. (2011). Advances in oral transmucosal drug delivery. Journal of Controlled Release, 153, 106–116.

    Article  CAS  PubMed  Google Scholar 

  20. Pelipenko, J., Kocbek, P., Govedarica, B., Rosic, R., Baumgartner, S., & Kristl, J. (2013). The Topography of electrospun nanofibers and its impact on the growth and mobility of keratinocytes. European Journal of Pharmaceutics and Biopharmaceutics, 84, 401–411.

    Article  CAS  PubMed  Google Scholar 

  21. Behzadi, P., & Behzadi, E. (2011). Modern medical mycology and opportunistic pathogenic yeasts (1st ed.). Persian Science & Research Publisher.

    Google Scholar 

  22. Zumbuehl, A., Ferreira, L., Kuhn, D., et al. (2007). Antifungal hydrogels. Proceedings of the National Academy of Sciences USA 104(32):12994–12998

  23. Ben Khalifa, R., Cacciatore, I., Dimmito, M. P., Ciulla, M., Grande, R., Puca, V., et al. (2022). Multiple lipid nanoparticles as antimicrobial drug delivery systems. Journal of Drug Delivery Science and Technology, 67, 102887.

    Article  CAS  Google Scholar 

  24. Takakura, N., Wakabayashi, H., Ishibashi, H., Teraguchi, S., Tamura, Y., Yamaguchi, H., & Abe, S. (2003). Oral lactoferrin treatment of experimental oral candidiasis in mice. Antimicrobial Agents and Chemotherapy, 47(8), 2619–2623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pattamatta, U., Willcox, M., Stapleton, F., Cole, N., & Garrett, Q. (2009). Bovine lactoferrin stimulates human corneal epithelial alkali wound healing in vitro. Investigative Ophthalmology & Visual Science, 50, 1636–1643.

    Article  Google Scholar 

  26. Zarif, L., Graybill, J. R., Perlin, D., Najvar, L., Bocanegra, R., & Mannino, R. J. (2000). Antifungal activity of amphotericin B cochleates against Candida albicans infection in a mouse model. Antimicrobial Agents and Chemotherapy, 44(6), 1463–1469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gupta, M., Goyal, A. K., Paliwal, S. R., Paliwal, R., Mishra, N., Vaidya, B., et al. (2010). Development and characterization of effective topical liposomal system for localized treatment of cutaneous candidiasis. Journal of Liposome Research, 20(4), 341–350.

    Article  CAS  PubMed  Google Scholar 

  28. Bhalaria, M. K., Naik, S., & Misra, A. N. (2009). Ethosomes: A novel system for antifungal drugs in the treatment of topical fungal disease. Indian Journal of Experimental Biology, 47(5), 368–375.

    CAS  PubMed  Google Scholar 

  29. Ramos, G., Cuenca-Estrella, M., Monzón, A., & Rodríguez-Tudela, J. L. (1999). In-vitro comparative activity of UR-9825, itraconazole and fluconazole against clinical isolates of Candida spp. Journal of Antimicrobial Chemotherapy, 44(2), 283–286.

    Article  CAS  PubMed  Google Scholar 

  30. Prabhu, P., Patravale, V., & Joshi, M. (2012). Nanocarriers for effective topical delivery of anti-infectives. Current Nanoscience, 8(4), 491–503.

    Article  CAS  Google Scholar 

  31. Planinšek, O., Kovačič, B., & Vrečer, F. (2011). Carvedilol dissolution improvement by preparation of solid dispersions with porous silica. International Journal of Pharmaceutics, 406, 41–48.

    Article  PubMed  Google Scholar 

  32. Rosic, R., Kocbek, P., Pelipenko, J., Kristl, J., & Baumgartner, S. (2013). Nanofibers and their biomedical use. Acta Pharmaceutica, 63, 295–304.

    Article  CAS  PubMed  Google Scholar 

  33. Sattar, M., Sayed, O. M., & Lane, M. E. (2014). Oral transmucosal drug delivery– currentstatus and future prospects. Internation Journal of Pharmaceutics, 471, 498–506.

    Article  CAS  Google Scholar 

  34. Seif, S., Franzen, L., & Windbergs, M. (2015). Overcoming drug crystallization in electrospun fibers–Elucidating key parameters and developing strategies for drug delivery. International Journal of Pharmaceutics, 478, 390–397.

    Article  CAS  PubMed  Google Scholar 

  35. Pappas, P. G., Kauffman, C. A., Andes, D. R., et al. (2016). Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 62(4), e1–e50.

    Article  PubMed  Google Scholar 

  36. Berkow, E. L., & Lockhart, S. R. (2017). Fluconazole resistance in Candida species: A current perspective. Infection and Drug Resistance, 10, 237–245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Akbar, E., & Syed, N. M. (2017). Synthesis of a novel structure for the oral delivery of insuli n and the study of its effect on diabetic rat. Life Sciences, 186, 43–49.

    Article  Google Scholar 

  38. Vigh, T., Horváthová, T., Balogh, A., Sóti, P. L., Drávavölgyi, G., Nagy, Z. K., & Marosi, G. (2013). Polymer-free and polyvinylpirrolidone-based electrospun solid dosage forms for drug dissolution enhancement. European Journal of Pharmaceutical Sciences, 49(4), 595–602.

    Article  CAS  PubMed  Google Scholar 

  39. Ranjbar-Mohammadi, M., Zamani, M., Prabhakaran, M., Bahrami, S. H., & Ramakrishna, S. (2016). Electrospinning of PLGA/gum tragacanth nanofibers containing tetracycline hydrochloride for periodontal regeneration. Materials Science and Engineering C, 58, 521–531.

    Article  CAS  PubMed  Google Scholar 

  40. Pawar, S., & Pande, V. (2015). Oleic acid coated gelatin nanoparticles impregnated gel for sustained delivery of zaltoprofen: Formulation and textural characterization. Advanced Pharmaceutical Bulletin, 5(4), 537–548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ji, W., Sun, Y., Yang, F., et al. (2011). Bioactive electrospun scaffolds delivering growth factors and genes for tissue engineering applications. Pharmaceutical Research, 28(6), 1259–1272.

    Article  CAS  PubMed  Google Scholar 

  42. Khanvilkar, K., Donovan, M. D., & Flanagan, D. R. (2001). Drug transfer through mucus. Advanced Drug Delivery Reviews, 48, 173–193.

    Article  CAS  PubMed  Google Scholar 

  43. Yehia, S. A., El-Gazayerly, O. N., & Basalious, E. B. (2008). Design and in vitro/in vivo evaluation of novel mucoadhesive buccal discs of an antifungal drug: Relationship between swelling, erosion, and drug release. AAPS Pharm SciTech, 9(4), 1207–1217.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the higher authorities for the facilities provided.

Funding

This work was supported by grants from the Postdoctoral Science Foundation of China (2018M631887).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Chen Li.

Ethics declarations

Ethical Statement

Ethical statement not required for this research.

Consent to Participate

Not applicable.

Consent to Publish

The corresponding author gives his consent for the publication of identifiable details within the article to be published in the journal.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Wang, D., Zhou, Y. et al. Antifungal Activity of Camelus-Derived LFA-LFC Chimeric Peptide Gelatin Film and Effect on Oral Bacterial Biofilm. Appl Biochem Biotechnol 195, 2993–3010 (2023). https://doi.org/10.1007/s12010-022-04248-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04248-1

Keywords

Navigation