Skip to main content
Log in

Protective Effects of Fermented Houttuynia cordata Against UVA and H2O2-Induced Oxidative Stress in Human Skin Keratinocytes

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The biological activities of Houttuynia cordata (H. cordata) fermented with Aureobasidium pullulans (A. pullulans) was investigated for human skin keratinocyte-induced chemical and photo oxidations. In this research, H2O2/UVA-induced HaCaT cell lines were treated with H. cordata water/ethanol extracts (HCW/HCE) and fermented with A. pullulans water/ethanol extracts (HCFW/HCFE). A. pullulans fermented with H. cordata (HCFW) increased in 5.4-folds of total polyphenol (HCFW 46.89 mg GAE/extract g), and 2.3-folds in flavonoids (HCFW 53.80 mg GAE/extract g) compared with water extracts of H. cordata (HCW). Further, no significant cytotoxicity for HaCaT cells showed by all the extracts of H. cordata fermented with A. pullulans. HCFW extracts have significantly lowered inflammation factors such as COX-2 and Hsp70 proteins in oxidative stressed HaCaT cells induced by H2O2 and UVA treatments. All H. cordata extracts significantly downregulated gene expression involved in oxidative stress and inflammation factors, including IL-1β, IL-6, COX-2, TNF-α, NF-κB, and MMP-1 in the H2O2/UVA-treated HaCaT cells. However, keratin-1 gene expression in the UVA-treated HaCaT cells was increased in twofolds by HCFW extracts. Further, A. pullulans fermented H. cordata extracts (HCFW/HCFE) reduced the genes involved in oxidative stresses more effectively than those of H. cordata extract only. Overall, the polyphenol-rich extracts of H. cordata fermented with A. pullulans showed synergistic protective effects for human epidermal keratinocytes to prevent photoaging and intrinsic aging by anti-oxidation and anti-inflammatory functions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Juzeniene, A., & Moan, J. (2012). Beneficial effects of UV radiation other than via vitamin D production. Dermatoendocrinol, 4, 109–117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Apalla, Z., Lallas, A., Sotiriou, E., Lazaridou, E., & Ioannides, D. (2017). Epidemiological trends in skin cancer. Dermatology Practical & Conceptual, 7, 1–6.

    Article  Google Scholar 

  3. Kumar, J. P., Alam, S., Jain, A. K., Ansari, K. M., & Mandal, B. B. (2018). Protective activity of silk sericin against UV radiation-induced skin damage by downregulating oxidative stress. ACS Applied Bio Materials, 1, 2120–2132.

    Article  CAS  PubMed  Google Scholar 

  4. Vile, G. F., & Tyrrell, R. M. (1995). UVA radiation-induced oxidative damage to lipids and proteins in vitro and in human skin fibroblasts is dependent on iron and singlet oxygen. Free Radical Biology & Medicine, 18, 721–730.

    Article  CAS  Google Scholar 

  5. Ding, Y., Jiratchayamaethasakul, C., & Lee, S.-H. (2020). Protocatechuic aldehyde attenuates UVA-induced photoaging in human dermal fibroblast cells by suppressing MAPKs/AP-1 and NF-κB signaling pathways. International Journal of Molecular Sciences, 21, 4619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Orioli, D., & Dellambra, E. (2018). Epigenetic regulation of skin cells in natural aging and premature aging diseases. Cells, 7, 268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jeon, S., & Choi, M. (2018). Anti-inflammatory and anti-aging effects of hydroxytyrosol on human dermal fibroblasts (HDFs). Biomedical Dermatology, 2, 1–8.

    Article  Google Scholar 

  8. Mittal, M., Siddiqui, M. R., Tran, K., Reddy, S. P., & Malik, A. B. (2014). Reactive oxygen species in inflammation and tissue injury. Antioxidants & Redox Signaling, 20, 1126–1167.

    Article  CAS  Google Scholar 

  9. Liu, T., Zhang, L., Joo, D., & Sun, S.-C. (2017). NF-κB signaling in inflammation. Signal Transduction and Targeted Therapy, 2, 17023.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Won, J.-H., Im, H.-T., Kim, Y.-H., Yun, K.-J., Park, H.-J., Choi, J.-W., & Lee, K.-T. (2006). Anti-inflammatory effect of buddlejasaponin IV through the inhibition of iNOS and COX-2 expression in RAW 264.7 macrophages via the NF-kappaB inactivation. British Journal of Pharmacology, 148, 216–225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Keum, Y. S., Kim, H. G., Bode, A. M., Surh, Y. J., & Dong, Z. (2013). UVB-induced COX-2 expression requires histone H3 phosphorylation at Ser10 and Ser28. Oncogene, 32, 444–452.

    Article  CAS  PubMed  Google Scholar 

  12. Fischer, S. M., Pavone, A., Mikulec, C., Langenbach, R., & Rundhaug, J. E. (2007). Cyclooxygenase-2 expression is critical for chronic UV-induced murine skin carcinogenesis. Molecular Carcinogenesis, 46, 363–371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brennan, M., Bhatti, H., Nerusu, K. C., Bhagavathula, N., Kang, S., Fisher, G. J., Varani, J., & Voorhees, J. J. (2003). Matrix metalloproteinase-1 is the major collagenolytic enzyme responsible for collagen damage in UV-irradiated human skin¶. Photochemistry and photobiology, 78, 43–48.

    Article  CAS  PubMed  Google Scholar 

  14. Ha, J. H., Kim, A. R., Lee, K.-S., Xuan, S. H., Kang, H. C., Lee, D. H., Cha, M. Y., Kim, H. J., An, M., & Park, S. N. (2019). Anti-Aging activity of Lavandula angustifolia extract fermented with pediococcus pentosaceus DK1 isolated from Diospyros kaki fruit in UVB-irradiated human skin fibroblasts and analysis of principal components. Journal of microbiology and biotechnology, 29, 21–29.

    Article  CAS  PubMed  Google Scholar 

  15. Kwon, K.-R., Alam, M. B., Park, J.-H., Kim, T.-H., & Lee, S.-H. (2019). Attenuation of UVB-induced photo-aging by polyphenolic-rich Spatholobus suberectus stem extract via modulation of MAPK/AP-1/MMPs signaling in human keratinocytes. Nutrients, 11, 1341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rahman, M., Alam, K., Zaki Ahmad, M., Gupta, G., Afzal, M., Akhter, S., Kazmi, I., Jalees Ahmad, F., & Anwar, F. (2012). Classical to current approach for treatment of psoriasis: A review. Endocrine Metabolic & Immune Disorders-Drug Targets Formerly Current Drug Targets-Immune, Endocrine & Metabolic Disorders, 12, 287–302.

    CAS  Google Scholar 

  17. Diniyah, N., Alam, M. B., Choi, H.-J., & Lee, S.-H. (2020). Lablab purpureus protects HaCaT Cells from oxidative stress-induced cell death through Nrf2-mediated heme oxygenase-1 expression via the activation of p38 and ERK1/2. International Journal of Molecular Sciences, 21, 8583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim, K. H., Park, S. J., Lee, Y. J., Lee, J. E., Song, C. H., Choi, S. H., Ku, S. K., & Kang, S. J. (2015). Inhibition of UVB-induced skin damage by exopolymers from Aureobasidium pullulans SM-2001 in Hairless Mice. Basic & Clinical Pharmacology & Toxicology, 116, 73–86.

    Article  CAS  Google Scholar 

  19. Hayashi, K., Kamiya, M., & Hayashi, T. (1995). Virucidal effects of the steam distillate from Houttuynia cordata and its components on HSV-1, influenza virus, and HIV. Planta medica, 61, 237–241.

    Article  CAS  PubMed  Google Scholar 

  20. Miyata, M., Koyama, T., & Yazawa, K. (2010). Water extract of Houttuynia cordata Thunb. leaves exerts anti-obesity effects by inhibiting fatty acid and glycerol absorption. Journal of nutritional science and vitaminology, 56, 150–156.

    Article  CAS  PubMed  Google Scholar 

  21. Kim, G. S., Kim, D. H., Lim, J. J., Lee, J. J., Han, D. Y., Lee, W. M., Jung, W. C., Min, W. G., Won, C. G., & Rhee, M. H. (2008). Biological and antibacterial activities of the natural herb Houttuynia cordata water extract against the intracellular bacterial pathogen salmonella within the RAW 264.7 macrophage. Biological and Pharmaceutical Bulletin, 31, 2012–2017.

    Article  CAS  PubMed  Google Scholar 

  22. Lu, H. M., Liang, Y. Z., Yi, L. Z., & Wu, X. J. (2006). Anti-inflammatory effect of Houttuynia cordata injection. Journal of Ethnopharmacology, 104, 245–249.

    Article  CAS  PubMed  Google Scholar 

  23. Kim, J. M., Hwang, I.-H., Jang, I.-S., Kim, M., Bang, I. S., Park, S. J., Chung, Y.-J., Joo, J.-C., & Lee, M.-G. (2017). Houttuynia cordata Thunb promotes activation of HIF-1A–FOXO3 and MEF2A pathways to induce apoptosis in human HepG2 hepatocellular carcinoma cells. Integrative Cancer Therapies, 16, 360–372.

    Article  PubMed  Google Scholar 

  24. Ahn, J., Chae, H.-S., Chin, Y.-W., & Kim, J. (2017). Alkaloids from aerial parts of Houttuynia cordata and their anti-inflammatory activity. Bioorganic & Medicinal Chemistry Letters, 27, 2807–2811.

  25. Sekita, Y., Murakami, K., Yumoto, H., Hirao, K., Amoh, T., Fujiwara, N., Hirota, K., Fujii, H., Matsuo, T., & Miyake, Y. (2017). Antibiofilm and anti-inflammatory activities of houttuynia cordata decoction for oral care. Evidence-Based Complementary and Alternative Medicine, 2017, 2850947.

  26. Chun, J. M., Nho, K. J., Kim, H. S., Lee, A. Y., Moon, B. C., & Kim, H. K. (2014). An ethyl acetate fraction derived from Houttuynia cordata extract inhibits the production of inflammatory markers by suppressing NF-кB and MAPK activation in lipopolysaccharide-stimulated RAW 264.7 macrophages. BMC Complementary and Alternative Medicine, 14, 234.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lee, H. J., Seo, H. S., Kim, G. J., Jeon, C. Y., Park, J. H., Jang, B. H., Park, S. J., Shin, Y. C., & Ko, S. G. (2013). Houttuynia cordata Thunb inhibits the production of pro-inflammatory cytokines through inhibition of the NFκB signaling pathway in HMC-1 human mast cells. Molecular Medicine reports, 8, 731–736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhu, H., Lu, X., Ling, L., Li, H., Ou, Y., Shi, X., Lu, Y., Zhang, Y., & Chen, D. (2018). Houttuynia cordata polysaccharides ameliorate pneumonia severity and intestinal injury in mice with influenza virus infection. Journal of ethnopharmacology, 218, 90–99.

    Article  CAS  PubMed  Google Scholar 

  29. Bozoudi, D., & Tsaltas, D. (2018). The multiple and versatile roles of Aureobasidium pullulans in the vitivinicultural sector. Fermentation, 4, 85.

    Article  CAS  Google Scholar 

  30. Muramatsu, D., Iwai, A., Aoki, S., Uchiyama, H., Kawata, K., Nakayama, Y., Nikawa, Y., Kusano, K., Okabe, M., & Miyazaki, T. (2012). β-glucan derived from Aureobasidium pullulans is effective for the prevention of influenza in mice. PLoS ONE, 7, e41399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kwon, R. H., & Ha, B. J. (2012). Increased flavonoid compounds from fermented Houttuynia cordata using isolated six of Bacillus from traditionally fermented Houttuynia cordata. Toxicological Research, 28, 117–122.

  32. Lee, S.-G., Kang, S., Lee, K.-Y., Park, K.-L. & Kang, H. (2017). Antioxidants and anti-inflammatory effects of fermented Houttuynia cordata Thunb and scoria mixture extract. Biomedical Science Letters, 23, 355–361.

  33. Lee, S. J., Hu, W., Lee, E. J., Choi, J. Y., & Koo, O. K. (2018). Polyphenolic Profile of fermented Houttuynia cordata Thunb. and Overall contribution to antioxidant and lipolytic activities. Food Engineering Progress, 22, 295–303.

  34. Hayashi, N., Shoubayashi, Y., Kondo, N., & Fukudome, K. (2019). Hydrothermal processing of β-glucan from Aureobasidium pullulans produces a low molecular weight reagent that regulates inflammatory responses induced by TLR ligands. Biochemical and Biophysical Research Communications, 511, 318–322.

    Article  CAS  PubMed  Google Scholar 

  35. Kawata, K., Iwai, A., Muramatsu, D., Aoki, S., Uchiyama, H., Okabe, M., Hayakawa, S., Takaoka, A., & Miyazaki, T. (2015). Stimulation of macrophages with the β-glucan produced by Aureobasidium pullulans promotes the secretion of tumor necrosis factor-related apoptosis inducing ligand (TRAIL). PLoS ONE, 10, e0124809.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Khaleghnezhad, V., Yousefi, A. R., Tavakoli, A., & Farajmand, B. (2019). Interactive effects of abscisic acid and temperature on rosmarinic acid, total phenolic compounds, anthocyanin, carotenoid and flavonoid content of dragonhead (Dracocephalum moldavica L.). Scientia Horticulturae, 250, 302–309.

    Article  CAS  Google Scholar 

  37. Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181, 1199–1200.

    Article  CAS  Google Scholar 

  38. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free radical biology and medicine, 26, 1231–1237.

    Article  CAS  PubMed  Google Scholar 

  39. Singh, M., Lee, K. E., Vinayagam, R., & Kang, S. G. (2021). Antioxidant and antibacterial profiling of pomegranate-pericarp extract functionalized-zinc oxide nanocomposite. Biotechnology and Bioprocess Engineering, 26, 728–737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kwon, N., Lee, K. E., Singh, M., & Kang, S. G. (2021). Suitable primers for GAPDH reference gene amplification in quantitative RT-PCR analysis of human gene expression. Gene Reports, 24, 101272.

    Article  CAS  Google Scholar 

  41. Napagoda, M. T., Malkanthi, B. M. A. S., Abayawardana, S. A. K., Qader, M. M., & Jayasinghe, L. (2016). Photoprotective potential in some medicinal plants used to treat skin diseases in Sri Lanka. BMC Complementary and Alternative Medicine, 16, 479.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ahmady, A., Amini, M. H., Zhakfar, A. M., Babak, G., & Sediqi, M. N. (2020). Sun protective potential and physical stability of herbal sunscreen developed from Afghan medicinal plants. Turkish Journal of Pharmaceutical Sciences, 17, 285–292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jakovljević, V. D., & Preservation. (2021). An overview of antioxidant capacity, total phenolics, and amino acids of Aureobasidium pullulans GM6. Journal of Food Processing and Preservation, 45, e15227.

  44. Palanisamy, U., Cheng, H. M., Masilamani, T., Subramaniam, T., Ling, L. T., & Radhakrishnan, A. K. (2008). Rind of the rambutan, Nephelium lappaceum, a potential source of natural antioxidants. Food Chemistry, 109, 54–63.

    Article  CAS  PubMed  Google Scholar 

  45. Thitilertdecha, N., Teerawutgulrag, A., & Rakariyatham, N. (2008). Antioxidant and antibacterial activities of Nephelium lappaceum L. extracts. LWT-Food Science and Technology, 41, 2029–2035.

    Article  CAS  Google Scholar 

  46. Chou, S.-C., Su, C.-R., Ku, Y.-C., & Wu, T.-S. (2009). The constituents and their bioactivities of Houttuynia cordata. Chemical and Pharmaceutical Bulletin, 57, 1227–1230.

    Article  CAS  PubMed  Google Scholar 

  47. Senawong, T., Khaopha, S., Misuna, S., Komaikul, J., Senawong, G., Wongphakham, P., & Yunchalard, S. (2014). Phenolic acid composition and anticancer activity against human cancer cell lines of the commercially available fermentation products of Houttuynia cordata. ScienceAsia, 40, 420–7.

    Article  Google Scholar 

  48. Ahn, J., Chae, H.-S., Chin, Y.-W., Kim, J. J. B. & Letters, M. C. (2017). Alkaloids from aerial parts of Houttuynia cordata and their anti-inflammatory activity. Bioorganic & Medicinal Chemistry Letters, 27, 2807–2811.

  49. Chaiprasongsuk, A., & Panich, U. (2022). Role of phytochemicals in skin photoprotection via regulation of Nrf2. Frontiers in Pharmacology, 13, 823881.

  50. Shin, D., Lee, Y., Huang, Y.-H., Lim, H.-W., Jang, K., Kim, D.-D., Lim, C.-J. (2018). Probiotic fermentation augments the skin anti-photoaging properties of Agastache rugosa through up-regulating antioxidant components in UV-B-irradiated HaCaT keratinocytes. BMC Complementary and Alternative Medicine, 18, 1–10.

  51. Wu, Z., Deng, X., Hu, Q., Xiao, X., Jiang, J., Ma, X., & Wu, M. (2021). Houttuynia cordata Thunb: An ethnopharmacological review. Frontiers in Pharmacology, 12, 714694.

  52. Sánchez-Moreno, C. (2002). Methods used to evaluate the free radical scavenging activity in foods and biological systems. Food science and technology international, 8, 121–137.

    Article  Google Scholar 

  53. Liu, J., Zhu, X., Yang, D., Li, R., & Jiang, J. (2021). Effect of heat treatment on the anticancer activity of Houttuynia cordata Thunb aerial stem extract in human gastric cancer SGC-7901 cells. Nutrition and Cancer, 73, 160–168.

    Article  CAS  PubMed  Google Scholar 

  54. Senawong, T., Khaopha, S., Misuna, S., Komaikul, J., Senawong, G., Wongphakham, P., & Yunchalard, S. (2014). Phenolic acid composition and anticancer activity against human cancer cell lines of the commercially available fermentation products of Houttuynia cordata. ScienceAsia, 40, 420–427.

    Article  Google Scholar 

  55. De Jager, T. L., Cockrell, A. E., & Du Plessis, S. S. (2017). in Ultraviolet light in human health (pp. 15–23). Springer.

    Google Scholar 

  56. Zhang, J., Wang, W., & Mao, X. (2020). Chitopentaose protects HaCaT cells against H2O2-induced oxidative damage through modulating MAPKs and Nrf2/ARE signaling pathways. Journal of Functional Foods, 72, 104086.

    Article  CAS  Google Scholar 

  57. Fanjul-Fernández, M., Folgueras, A. R., Cabrera, S., & López-Otín, C. (2010). Matrix metalloproteinases: evolution, gene regulation and functional analysis in mouse models. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1803, 3–19.

    Article  PubMed  Google Scholar 

  58. Pittayapruek, P., Meephansan, J., Prapapan, O., Komine, M., & Ohtsuki, M. (2016). Role of matrix metalloproteinases in photoaging and photocarcinogenesis. International Journal of Molecular Sciences, 17, 868.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Matsuda, M., Hoshino, T., Yamashita, Y., Tanaka, K.-I., Maji, D., Sato, K., Adachi, H., Sobue, G., Ihn, H., & Funasaka, Y. (2010). Prevention of UVB radiation-induced epidermal damage by expression of heat shock protein 70. Journal of Biological Chemistry, 285, 5848–5858.

    Article  CAS  PubMed  Google Scholar 

  60. Simon, M. M., Reikerstorfer, A., Schwarz, A., Krone, C., Luger, T. A., Jäättelä, M., & Schwarz, T. (1995). Heat shock protein 70 overexpression affects the response to ultraviolet light in murine fibroblasts. Evidence for increased cell viability and suppression of cytokine release. The Journal of clinical investigation, 95, 926–933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fuller, B. (2019). Role of PGE-2 and other inflammatory mediators in skin aging and their inhibition by topical natural anti-inflammatories. Cosmetics, 6, 6.

  62. Balupillai, A., Kanimozhi, G., Khan, H. A., Alhomida, A. S. & Prasad, N. R. (2020). Opuntiol prevents photoaging of mouse skin via blocking inflammatory responses and collagen degradation. Oxidative Medicine and Cellular Longevity, 2020, 5275178.

  63. Tang, S.-C., Liao, P.-Y., Hung, S.-J., Ge, J.-S., Chen, S.-M., Lai, J.-C., Hsiao, Y.-P., & Yang, J.-H. (2017). Topical application of glycolic acid suppresses the UVB induced IL-6, IL-8, MCP-1 and COX-2 inflammation by modulating NF-κB signaling pathway in keratinocytes and mice skin. Journal of dermatological science, 86, 238–248.

    Article  CAS  PubMed  Google Scholar 

  64. Maes, M. (2008). The cytokine hypothesis of depression: Inflammation, oxidative & nitrosative stress (IO&NS) and leaky gut as new targets for adjunctive treatments in depression. Neuroendocrinology Letters, 29, 287–291.

    CAS  PubMed  Google Scholar 

  65. Wlaschek, M., Heinen, G., Poswig, A., Schwarz, A., Krieg, T., & Scharffetter-Kochanek, K. (1994). UVA-induced autocrine stimulation of fibroblast-derived collagenase/mmp-1 by interrelated loops ofinterleukin–1 andinterleukin–6. Photochemistry and Photobiology, 59, 550–556.

    Article  CAS  PubMed  Google Scholar 

  66. Oh, J. H., Karadeniz, F., Lee, J. I., Kim, H. R., Seo, Y., & Kong, C.-S. (2020). Antiphotoaging effect of (2′ S)-Columbianetin from Corydalis heterocarpa in UVA-irradiated human dermal fibroblasts. Applied Sciences, 10, 2568.

    Article  CAS  Google Scholar 

  67. Zhao, J., Cheung, P. C. (2011). Fermentation of β-glucans derived from different sources by bifidobacteria: Evaluation of their bifidogenic effect. Journal of agricultural and food chemistry, 59, 5986–5992.

Download references

Acknowledgements

The authors thank the Core Research Support Center for Natural Products and Medical Materials at Yeungnam University, Gyeongsan, the Republic of Korea, for technical support regarding PCR analysis using the RT-PCR and Freeze Dryer (FDA5518). This work has been supported by Stemforce Inc., Gyeongsan, Republic of Korea.

Author information

Authors and Affiliations

Authors

Contributions

Nakyoung Kwon: experiment. Ramachandran Vinayagam: writing-original draft, data curation, and editing. Geum Sook Do: data curation, writing, and editing of the manuscript. Kyung Eun Lee: experiment design, perform experiments, methodology development, data curation, and material support. Sang Gu Kang: experiment design, writing and editing the manuscript, and project supervision. All the authors read and approved the manuscript.

Corresponding authors

Correspondence to Kyung Eun Lee or Sang Gu Kang.

Ethics declarations

Ethics Approval

Not applicable. This article does not contain any with human participants or animals.

Consent to Participate

Not applicable because this study does not involve human participants.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, N., Vinayagam, R., Do, G.S. et al. Protective Effects of Fermented Houttuynia cordata Against UVA and H2O2-Induced Oxidative Stress in Human Skin Keratinocytes. Appl Biochem Biotechnol 195, 3027–3046 (2023). https://doi.org/10.1007/s12010-022-04241-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04241-8

Keywords

Navigation