Skip to main content

Advertisement

Log in

Research Status and Application Prospects of the Medicinal Mushroom Armillaria mellea

  • Review Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Armillaria is one of the most common diseases underlying chronic root rot in woody plants. Although there is no particularly effective way to prevent it, soil disinfection is a common effective protective measure. However, Armillaria itself has important medicinal value and is a symbiotic fungus in the cultivation of Gastrodia elata and Polyporus umbellatus. Therefore, researching Armillaria is of great practical significance. In this review, the biological characteristics, cultivation methods, chemical components, food and medicinal value and efficacy of Armillaria were all reviewed, and its development and utilization direction were analyzed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All relevant data are contained within the paper.

References

  1. Morrison, D. J., Cruickshank, M. G., & Lalumière, A. (2014). Control of laminated and Armillaria root diseases by stump removal and tree species mixtures: Amount and cause of mortality and impact on yield after 40 years. Forest Ecology & Management, 319, 75–98.

    Article  Google Scholar 

  2. Aguín, O., Mansilla, J. P., & Sainz, M. J. (2006). In vitro selection of an effective fungicide against Armillaria mellea and control of white root rot of grapevine in the field. Pest Management Science: Formerly Pesticide Science, 62(3), 223–228.

    Article  Google Scholar 

  3. Zhang, T., Du, Y., Liu, X., Sun, X., Cai, E., Zhu, H., & Zhao, Y. (2021). Study on antidepressant-like effect of protoilludane sesquiterpenoid aromatic esters from Armillaria Mellea. Natural Product Research, 35(6), 1042–1045.

    Article  CAS  PubMed  Google Scholar 

  4. Kubiak, K., Żółciak, A., Damszel, M., Lech, P., & Sierota, Z. (2017). Armillaria pathogenesis under climate changes. Forests, 8(4), 100.

    Article  Google Scholar 

  5. Pham, T., Chen, H., Yu, J., Dai, L., Zhang, R., & Vu, T. Q. T. (2014). The Differential effects of the blue-stain fungus Leptographium qinlingensis on monoterpenes and sesquiterpenes in the stem of Chinese white pine (Pinus armandi) saplings. Forests, 5(11), 2730–2749.

    Article  Google Scholar 

  6. Wong, J. W. H., Plett, K. L., Natera, S. H., Roessner, U., Anderson, I. C., & Plett, J. M. (2020). Comparative metabolomics implicates threitol as a fungal signal supporting colonization of Armillaria luteobubalina on eucalypt roots. Plant, Cell & Environment, 43(2), 374–386.

    Article  CAS  Google Scholar 

  7. Marçais, B., & Wargo, P. M. (2000). Impact of liming on the abundance and vigor of Armillaria rhizomorphs in Allegheny hardwoods stands. Canadian Journal of Forest Research, 30(12), 1847–1857.

    Article  Google Scholar 

  8. Kile, G., Keane, P., Podger, F., & Brown, B. (2000). Woody root rots of eucalypts (pp. 293–306). CSIRO Publishing.

    Google Scholar 

  9. Coetzee, M. P., Musasira, N. Y., Roux, J., Roets, F., van der Merwe, N. A., & Wingfield, M. J. (2018). Armillaria root rot spreading into a natural woody ecosystem in South Africa. Plant Pathology, 67(4), 883–891.

    Article  Google Scholar 

  10. Heinzelmann, R., Prospero, S., & Rigling, D. (2018). Frequent diploidisation of haploid Armillaria ostoyae strains in an outdoor inoculation experiment. Fungal biology, 122(2–3), 147–155.

    Article  PubMed  Google Scholar 

  11. Hintikka, V. (1973). A note on the polarity of Armillariella mellea. Karstenia, 13, 32–39.

    Article  Google Scholar 

  12. Sipos, G., Prasanna, A. N., Walter, M. C., O’Connor, E., Bálint, B., Krizsán, K., ... and Nagy, L. G. (2017) Genome expansion and lineage-specific genetic innovations in the forest pathogenic fungi Armillaria. Nature ecology & evolution, 1(12), 1931-1941

  13. Labbé, F., Lung-Escarmant, B., Fievet, V., Soularue, J. P., Laurent, C., Robin, C., & Dutech, C. (2017). Variation in traits associated with parasitism and saprotrophism in a fungal root-rot pathogen invading intensive pine plantations. Fungal Ecology, 26, 99–108.

    Article  Google Scholar 

  14. Łopusiewicz, Ł. (2018). The isolation, purification and analysis of the melanin pigment extracted from Armillaria mellea rhizomorphs. World Scientific News, 100, 135–153.

    Google Scholar 

  15. Yafetto, L. (2018). The structure of mycelial cords and rhizomorphs of fungi: A mini-review. Mycosphere, 9(5), 984–998.

    Article  Google Scholar 

  16. Bloomfield, B. J., & Alexander, M. (1967). Melanins and resistance of fungi to lysis. Journal of Bacteriology, 93(4), 1276–1280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mishra, M., & Srivastava, D. (2021). Bioluminescent fungi: Reviewing nature’s riddle. Journal of Mycopathological Research, 59, 199–206.

    Google Scholar 

  18. Qurniawati, M., & Wulan, R. (2021). Optimization of the optimum condition of mushroom light excitation (Neonothopanus sp) bioluminescence. Eksakta: Berkala Ilmiah Bidang MIPA (E-ISSN: 2549-7464), 22(1), 1–9.

    Google Scholar 

  19. Rishbeth, J. (1978). Effects of soil temperature and atmosphere on growth of Armillaria rhizomorphs. Transactions of the British Mycological Society, 70(2), 213–220.

    Article  CAS  Google Scholar 

  20. Desjardin, D. E., Oliveira, A. G., & Stevani, C. V. (2008). Fungi bioluminescence revisited. Photochemical & Photobiological Sciences, 7(2), 170–182.

    Article  CAS  Google Scholar 

  21. Coetzee, M. P., Bloomer, P., Wingfield, M. J., & Wingfield, B. D. (2011). Paleogene radiation of a plant pathogenic mushroom. PLoS ONE, 6(12), e28545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Koch, R. A., Wilson, A. W., Séné, O., Henkel, T. W., & Aime, M. C. (2017). Resolved phylogeny and biogeography of the root pathogen Armillaria and its gasteroid relative. Guyanagaster. BMC Evolutionary Biology, 17(1), 1–16.

    Google Scholar 

  23. Coetzee, M. P., Wingfield, B. D., & Wingfield, M. J. (2018). Armillaria root-rot pathogens: Species boundaries and global distribution. Pathogens, 7(4), 83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang, Y. C., Zhang, Y. W., Zheng, L. H., Bao, Y. L., Wu, Y., Yu, C. L., & Li, Y. X. (2013). A new compound from liquid fermentation broth of Armillaria mellea and the determination of its absolute configuration. Journal of Asian natural products research, 15(2), 203–208.

    Article  CAS  PubMed  Google Scholar 

  25. Yong, T., Chen, S., Xie, Y., Chen, D., Su, J., Shuai, O., Hu, H., Zuo, D., & Liang, D. (2018). Hypouricemic effects of Armillaria mellea on hyperuricemic mice regulated through OAT1 and CNT2. The American Journal of Chinese Medicine, 46(03), 585–599.

    Article  CAS  PubMed  Google Scholar 

  26. Park, E. J., & Lee, W. Y. (2013). Quantitative effects of various tree species on tuber growth and pharmacological compositions of Gastrodia elata. Horticulture, Environment, and Biotechnology, 54(4), 357–363.

    Article  Google Scholar 

  27. Xing, X., Men, J., & Guo, S. (2017). Phylogenetic constrains on Polyporus umbellatus-Armillaria associations. Scientific reports, 7(1), 1–9.

    Article  Google Scholar 

  28. Adnan, L. A., Hadibarata, T., Sathishkumar, P., & MohdYusoff, A. R. (2016). Biodegradation pathway of Acid Red 27 by white-rot fungus Armillaria sp. F022 and Phytotoxicity Evaluation. CLEAN–Soil Air Water, 44(3), 239–246.

    Article  CAS  Google Scholar 

  29. Giardina, P., Faraco, V., Pezzella, C., Piscitelli, A., Vanhulle, S., & Sannia, G. (2010). Laccases: A never-ending story. Cellular and Molecular Life Sciences, 67(3), 369–385.

    Article  CAS  PubMed  Google Scholar 

  30. Palmieri, G., Cennamo, G., & Sannia, G. (2005). Remazol Brilliant Blue R decolourisation by the fungus Pleurotus ostreatus and its oxidative enzymatic system. Enzyme and Microbial Technology, 36(1), 17–24.

    Article  CAS  Google Scholar 

  31. Peralta-Zamora, P., Pereira, C. M., Tiburtius, E. R., Moraes, S. G., Rosa, M. A., Minussi, R. C., & Durán, N. (2003). Decolorization of reactive dyes by immobilized laccase. Applied Catalysis B: Environmental, 42(2), 131–144.

    Article  CAS  Google Scholar 

  32. Jiao, Y. C., Chen, Q. H., Zhou, J. S., Zhang, H. F., & Chen, H. Y. (2008). Improvement of exo-polysaccharides production and modeling kinetics by Armillaria luteo-virens Sacc. in submerged cultivation. LWT-Food Science and Technology, 41(9), 1694–1700.

    Article  CAS  Google Scholar 

  33. Herath, H. B., Jacob, M., Wilson, A. D., Abbas, H. K., & Nanayakkara, N. D. (2013). New secondary metabolites from bioactive extracts of the fungus Armillaria tabescens. Natural product research, 27(17), 1562–1568.

    Article  CAS  PubMed  Google Scholar 

  34. Heinzelmann, R., Croll, D., Zoller, S., Sipos, G., Münsterkötter, M., Güldener, U., & Rigling, D. (2017). High-density genetic mapping identifies the genetic basis of a natural colony morphology mutant in the root rot pathogen Armillaria ostoyae. Fungal Genetics and Biology, 108, 44–54.

    Article  CAS  PubMed  Google Scholar 

  35. Singh, P. (1980). Armillaria root rot: Artificial inoculation and development of the disease in greenhouse 1. European Journal of Forest Pathology, 10(7), 420–431.

    Article  Google Scholar 

  36. Lung, M. Y., & Huang, P. C. (2010). Optimization of exopolysaccharide production from Armillaria mellea in submerged cultures. Letters in applied microbiology, 50(2), 198–204.

    Article  CAS  PubMed  Google Scholar 

  37. Schinner, F., & Concin, R. (1981). Carbon dioxide fixation by wood-rotting fungi. European Journal of Forest Pathology, 11(1–2), 120–123.

    Article  Google Scholar 

  38. Guo, W. J., Xing, Y. M., Chen, J., & Guo, S. X. (2011). Growth promoting effects of water extract of Armillaria mellea rhizomorph on mycelia of Polyporus umbellatus. Cryptogamie, Mycologie, 32(2), 171–176.

    Article  Google Scholar 

  39. Schulze, S., & Bahnweg, G. (1998). Critical review of identification techniques for Armillaria spp. and Heterobasidion annosum root and butt rot diseases. Journal of Phytopathology, 146(2–3), 61–72.

    Article  CAS  Google Scholar 

  40. Luiz, D., De Rezende, L., Bertoldo Costa, L., Bernardo, H. V., Pinto, Z., Marcelo, A., Medeiros, F., & Bettiol, W. (2018). Optimizing the mass production of Clonostachys rosea by liquid-state fermentation. Biological Control, 118, 16–25.

    Article  Google Scholar 

  41. Miguélez, E. M., Martín, C., Hardisson, C., & Manzanal, M. B. (1993). Synchronous germination of Streptomyces antibioticus spores: Tool for the analysis of hyphal growth in liquid cultures. FEMS microbiology letters, 109(2–3), 123–129.

    Article  PubMed  Google Scholar 

  42. Ma, L., Lin, Y. Q., Yang, C., Ying, Z. H., & Jiang, X. L. (2016). Production of liquid spawn of an edible mushroom, Sparassis latifolia by submerged fermentation and mycelial growth on pine wood sawdust. Scientia horticulturae, 209, 22–30.

    Article  CAS  Google Scholar 

  43. Wang, Y. C., Zhang, Y. W., Zheng, L. H., Bao, Y. L., Wu, Y., Yu, C. L., Huang, Y. X., Sun, L. G., Jia, X. J., & Li, Y. X. (2013). Four new alkaloids from the fermentation broth of Armillaria mellea. Helvetica Chimica Acta, 96(2), 330–337.

    Article  Google Scholar 

  44. Shi, X., Monaco, M. H., Donovan, S. M., & Lee, Y. (2020). Encapsulation of tributyrin by gamma-cyclodextrin: Complexation, spray drying, and in vitro fermentation. Journal of food science, 85(10), 2986–2993.

    Article  CAS  PubMed  Google Scholar 

  45. Carnevali, P., Ciati, R., Leporati, A., & Paese, M. (2007). Liquid sourdough fermentation: Industrial application perspectives. Food microbiology, 24(2), 150–154.

    Article  CAS  PubMed  Google Scholar 

  46. Yuan, Y., Xu, Y., & Liu, X. (2009). CFD modeling of subcooling process for beer fermentation liquid. Asia-Pacific Journal of Chemical Engineering, 4(1), 99–106.

    Article  CAS  Google Scholar 

  47. Sahu, N., Merényi, Z., Bálint, B., Kiss, B., Sipos, G., Owens, R. A., & Nagy, L. G. (2021). Hallmarks of Basidiomycete soft-and white-rot in wood-decay-Omics data of two Armillaria species. Microorganisms, 9(1), 149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Heinzelmann, R., Dutech, C., Tsykun, T., Labbé, F., Soularue, J. P., & Prospero, S. (2019). Latest advances and future perspectives in Armillaria research. Canadian journal of plant pathology, 41(1), 1–23.

    Article  Google Scholar 

  49. Devkota, P., & Hammerschmidt, R. (2020). The infection process of Armillaria mellea and Armillaria solidipes. Physiological and Molecular Plant Pathology, 112, 101543.

    Article  CAS  Google Scholar 

  50. Camprubi, A., Solari, J., Bonini, P., Garcia-Figueres, F., Colosimo, F., Cirino, V., ... and Calvet, C. (2020) Plant performance and metabolomic profile of loquat in response to mycorrhizal inoculation, armillaria mellea and their interaction. Agronomy, 10(6), 899

  51. Linnakoski, R., Sutela, S., Coetzee, M., Duong, T. A., Pavlov, I. N., Litovka, Y. A., ... and Vainio, E. J. (2021) Armillaria root rot fungi host single-stranded RNA viruses. Scientific reports, 11(1), 1-15

  52. Porter, D. L., Bradshaw, A. J., Nielsen, R. H., Newell, P., Dentinger, B. T., & Naleway, S. E. (2022). The melanized layer of Armillaria ostoyae rhizomorphs: Its protective role and functions. Journal of the Mechanical Behavior of Biomedical Materials, 125, 104934.

    Article  CAS  PubMed  Google Scholar 

  53. Calamita, F., Imran, H. A., Vescovo, L., Mekhalfi, M. L., & La Porta, N. (2021). Early identification of root rot disease by using hyperspectral reflectance: The case of pathosystem grapevine/armillaria. Remote Sensing, 13(13), 2436.

    Article  Google Scholar 

  54. Schwartz, M., Perrot, T., Aubert, E., Dumarçay, S., Favier, F., Gérardin, P., ... and Gelhaye, E. (2018) Molecular recognition of wood polyphenols by phase II detoxification enzymes of the white rot Trametes versicolor. Scientific reports, 8(1), 1-11

  55. Mäkinen, M. A., Risulainen, N., Mattila, H., & Lundell, T. K. (2018). Transcription of lignocellulose-decomposition associated genes, enzyme activities and production of ethanol upon bioconversion of waste substrate by Phlebia radiata. Applied microbiology and biotechnology, 102(13), 5657–5672.

    Article  PubMed  Google Scholar 

  56. Fradj, N., De Montigny, N., Mérindol, N., Awwad, F., Boumghar, Y., Germain, H., & Desgagné-Penix, I. (2020). A first insight into North American plant pathogenic fungi Armillaria sinapina transcriptome. Biology, 9(7), 153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Baumgartner, K., Fujiyoshi, P., Ledbetter, C., Duncan, R., & Kluepfel, D. A. (2018). Screening almond rootstocks for sources of resistance to Armillaria root disease. HortScience, 53, 4–8.

    Article  Google Scholar 

  58. Heinzelmann, R., Prospero, S., & Rigling, D. (2017). Virulence and stump colonization ability of Armillaria borealis on Norway spruce seedlings in comparison to sympatric Armillaria species. Plant disease, 101(3), 470–479.

    Article  CAS  PubMed  Google Scholar 

  59. Miller, S. B., Gasic, K., Reighard, G. L., Henderson, W. G., Rollins, P. A., Vassalos, M., & Schnabel, G. (2020). Preventative root-collar excavation reduces peach tree mortality caused by Armillaria root rot on replant sites. Plant Disease, 104(5), 1274–1279.

    Article  PubMed  Google Scholar 

  60. Sturrock, R. N., Frankel, S. J., Brown, A. V., Hennon, P. E., Kliejunas, J. T., Lewis, K. J., Worrall, J. J., & Woods, A. J. (2011). Climate change and forest diseases. Plant pathology, 60(1), 133–149.

    Article  Google Scholar 

  61. Weißhuhn, P., Reckling, M., Stachow, U., & Wiggering, H. (2017). Supporting agricultural ecosystem services through the integration of perennial polycultures into crop rotations. Sustainability, 9(12), 2267.

    Article  Google Scholar 

  62. Schiebe, C., Hammerbacher, A., Birgersson, G., Witzell, J., Brodelius, P. E., Gershenzon, J., ... and Schlyter, F. (2012) Inducibility of chemical defenses in Norway spruce bark is correlated with unsuccessful mass attacks by the spruce bark beetle. Oecologia, 170(1), 183-198

  63. Sun, Y., Liang, H., Zhang, X., Tong, H., & Liu, J. (2009). Structural elucidation and immunological activity of a polysaccharide from the fruiting body of Armillaria mellea. Bioresource Technology, 100(5), 1860–1863.

    Article  CAS  PubMed  Google Scholar 

  64. Muszynska, B., Sulkowska-Ziaja, K., Wolkowska, M. and Ekiert, H. (2011) Chemical, pharmacological, and biological characterization of the culinary-medicinal honey mushroom, Armillaria mellea (Vahl) P. Kumm.(Agaricomycetideae): A review. International Journal of Medicinal Mushrooms, 13(2),167–175.

  65. Chen, Y. J., Wu, S. Y., Chen, C. C., Tsao, Y. L., Hsu, N. C., Chou, Y. C., & Huang, H. L. (2014). Armillaria mellea component armillarikin induces apoptosis in human leukemia cells. Journal of Functional Foods, 6, 196–204.

    Article  CAS  Google Scholar 

  66. Geng, Y., Zhu, S., Cheng, P., Lu, Z. M., Xu, H. Y., Shi, J. S., & Xu, Z. H. (2017). Bioassay-guided fractionation of ethyl acetate extract from Armillaria mellea attenuates inflammatory response in lipopolysaccharide (LPS) stimulated BV-2 microglia. Phytomedicine, 26, 55–61.

    Article  CAS  PubMed  Google Scholar 

  67. An, S., Lu, W., Zhang, Y., Yuan, Q., & Wang, D. (2017). Pharmacological basis for use of Armillaria mellea polysaccharides in Alzheimer’s disease: antiapoptosis and antioxidation. Oxidative Medicine and Cellular Longevity, 2017, 1–11.

    CAS  Google Scholar 

  68. Chen, R., Ren, X., Yin, W., Lu, J., Tian, L., Zhao, L., Yang, R., & Luo, S. (2020). Ultrasonic disruption extraction, characterization and bioactivities of polysaccharides from wild Armillaria mellea. International journal of biological macromolecules, 156, 1491–1502.

    Article  CAS  PubMed  Google Scholar 

  69. Chen, C., Shao, Y., Tao, Y., & Wen, H. (2015). Optimization of dynamic microwave-assisted extraction of Armillaria polysaccharides using RSM, and their biological activity. LWT-Food Science and Technology, 64(2), 1263–1269.

    Article  CAS  Google Scholar 

  70. Amar, C., Delaumèny, J. M., & Vilkas, E. (1976). Chemical and biological properties of peptido-glucan fraction from Armillaria mellea (Basidiomycetes). Biochimica et Biophysica Acta (BBA)-General Subjects, 421(2), 263–271.

    Article  CAS  PubMed  Google Scholar 

  71. Wu, J., Zhou, J., Lang, Y., Yao, L., Xu, H., Shi, H., & Xu, S. (2012). A polysaccharide from Armillaria mellea exhibits strong in vitro anticancer activity via apoptosis-involved mechanisms. International journal of biological macromolecules, 51(4), 663–667.

    Article  CAS  PubMed  Google Scholar 

  72. Zhong, X., Jiang, H. Y., Guo, J. L., Liu, Z. C., & Yu, L. Y. (2018). Polysaccharide extracted from armillaria mellea by ultrasonic-assisted method. New Materials and Intelligent Manufacturing, 326, 329.

    Google Scholar 

  73. Zavastin, D. E., Biliută, G., Dodi, G., Macsim, A. M., Lisa, G., Gherman, S. P., Chen, H. R., & Coseri, S. (2018). Metal content and crude polysaccharide characterization of selected mushrooms growing in Romania. Journal of Food Composition and Analysis, 67, 149–158.

    Article  CAS  Google Scholar 

  74. Yu, G., Yue, C., Zang, X., Chen, C., Dong, L., & Liu, Y. (2019). Purification, characterization and in vitro bile salt-binding capacity of polysaccharides from Armillaria mellea mushroom. Czech Journal of Food Sciences, 37(1), 51–56.

    Article  CAS  Google Scholar 

  75. Yan, J., Han, Z., Qu, Y., Yao, C., Shen, D., Tai, G., Chen, H. R., & Zhou, Y. (2018). Structure elucidation and immunomodulatory activity of a β-glucan derived from the fruiting bodies of Amillariella mellea. Food chemistry, 240, 534–543.

    Article  CAS  PubMed  Google Scholar 

  76. Gao, J. M., Yang, X., Wang, C. Y., & Liu, J. K. (2001). Armillaramide, A new sphingolipid from the fungus Armillaria mellea. Fitoterapia, 72(8), 858–864.

    Article  CAS  PubMed  Google Scholar 

  77. Chen, Y. J., Chen, C. C., & Huang, H. L. (2016). Induction of apoptosis by Armillaria mellea constituent armillarikin in human hepatocellular carcinoma. OncoTargets and therapy, 9, 4773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chang, W. H., Huang, H. L., Huang, W. P., Chen, C. C., & Chen, Y. J. (2016). Armillaridin induces autophagy-associated cell death in human chronic myelogenous leukemia K562 cells. Tumor Biology, 37(10), 14291–14300.

    Article  CAS  PubMed  Google Scholar 

  79. Li, Z., Wang, Y., Jiang, B., Li, W., Zheng, L., Yang, X., Bao, Y., Sun, Lu., Yan, X., Huang, Y., & Li, Y. (2016). Structure, cytotoxic activity and mechanism of protoilludane sesquiterpene aryl esters from the mycelium of Armillaria mellea. Journal of ethnopharmacology, 184, 119–127.

    Article  CAS  PubMed  Google Scholar 

  80. Kedlian, V. R., Donertas, H. M., & Thornton, J. M. (2019). The widespread increase in inter-individual variability of gene expression in the human brain with age. Aging (Albany NY), 11(8), 2253.

    Article  CAS  PubMed  Google Scholar 

  81. Strapáč, I., Baranová, M., Smrčová, M., & Bedlovičová, Z. (2016). Antioxidant activity of honey mushrooms (Armillaria mellea). Folia Veterinaria, 60(4), 37–41.

    Article  Google Scholar 

  82. Zhang, S., Liu, X., Yan, L., Zhang, Q., Zhu, J., Huang, N., & Wang, Z. (2015). Chemical compositions and antioxidant activities of polysaccharides from the sporophores and cultured products of Armillaria mellea. Molecules, 20(4), 5680–5697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lung, M. Y., & Hsieh, C. W. (2011). Antioxidant property and production of exopolysaccharide from Armillaria mellea in submerged cultures: Effect of culture aeration rate. Engineering in Life Sciences, 11(5), 482–490.

    Article  CAS  Google Scholar 

  84. Lung, M. Y., & Chang, Y. C. (2011). Antioxidant properties of the edible basidiomycete Armillaria mellea in submerged cultures. International Journal of Molecular Sciences, 12(10), 6367–6384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sułkowska-Ziaja, K., Muszyńska, B., & Końska, G. (2005). Biologically active compounds of fungal origin displaying antitumor activity. Acta Poloniae Pharmaceutica. Drug Research, 62(2), 153–160.

    Google Scholar 

  86. Yang, S., Meng, Y., Yan, J., Wang, N., Xue, Z., Zhang, H., & Fan, Y. (2019). Polysaccharide-enriched fraction from Amillariella mellea fruiting body improves insulin resistance. Molecules, 24(1), 46.

    Article  Google Scholar 

  87. Yang, Y. H., Zheng, G. Q., Tang, J., Wang, Y. M., Zhu, C. W., Ji, H. Y., Xu, X. M., & Liu, A. J. (2014). Effect of Armillaria mellea on blood lipid levels and antioxidant enzymes activity in high fat mice. Advanced Materials Research, 884–885, 423–428.

    Article  Google Scholar 

  88. Dörfer, M., Heine, D., König, S., Gore, S., Werz, O., Hertweck, C., ... and Hoffmeister, D. (2019) Melleolides impact fungal translation via elongation factor 2. Organic & biomolecular chemistry, 17(19), 4906-4916

  89. Niu, Y. W., Li, H. J., Dong, Y. C., Xu, D. Q., & Chen, Q. H. (2016). Improved gastrodin production of biotransformation conditions by cultured cells Armillaria luteo-virens sacc and the antiinflammatory activity in vivo. Med chem (Los Angeles), 6, 211–217.

    Article  Google Scholar 

  90. Liu, T. P., Chen, C. C., Shiao, P. Y., Shieh, H. R., Chen, Y. Y., & Chen, Y. J. (2015). Armillaridin, a honey medicinal mushroom, Armillaria mellea (higher Basidiomycetes) component, inhibits differentiation and activation of human macrophages. International Journal of Medicinal Mushrooms, 17(2), 161–168.

    Article  PubMed  Google Scholar 

  91. Kütük, A., & Gökhan, S. A. D. İ. (2020). Inhibitory effects of Armillaria mellea (Vahl) P. Kumm. on liver glutathione S-transferase activity. Anatolian Journal of Botany, 4(1), 1–7.

    Article  Google Scholar 

  92. Yang, L. H., Huang, Q. R., Feng, P. Y., Jiang, H., Cai, D. H., & Liu, J. (2007). Isolation and identification of saccharides from Armillaria mellea and their effects on scavenging oxygen free radicals. Food Science, 28, 309–313.

    Google Scholar 

  93. Li, Y. P., Wu, K. F., & Liu, Y. (2005). Protective effect of Armillaria mellea polysaccharide on mice bone marrow cell damage caused by cyclophosphamide. China Journal of Chinese Materia Medica, 30(4), 283–286.

    CAS  PubMed  Google Scholar 

  94. Watanabe, N., Obuchi, T., Tamai, M., Araki, H., Omura, S., Jun-Shan, Y., ... and Jun-Hua, H. (1990) A novel N6-substituted adenosine isolated from mi huan jun (Armillaria mellea) as a cerebral-protecting compound. Planta medica, 56(01), 48-52

Download references

Author information

Authors and Affiliations

Authors

Contributions

Dr. Sizhu Ren conceived and wrote this paper; Prof. Wenjie Chen commented on the manuscript. All authors contributed to the manuscript preparation and found a great deal of relevant literature according to professional experience.

Corresponding authors

Correspondence to Sizhu Ren or Wenjie Chen.

Ethics declarations

Consent to Participate

Not applicable.

Consent to Publish

All authors have agreed to publish the paper.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1. Symbiotic mechanism of Armillaria was discussed.

2. Causes of white rot and its related control measures were introduced.

3. Food and medicinal value of Armillaria were summarized.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, S., Gao, Y., Li, H. et al. Research Status and Application Prospects of the Medicinal Mushroom Armillaria mellea. Appl Biochem Biotechnol 195, 3491–3507 (2023). https://doi.org/10.1007/s12010-022-04240-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04240-9

Keywords

Navigation