Skip to main content
Log in

Synergistic Degradation of Maize Straw Lignin by Manganese Peroxidase from Irpex lacteus

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Lignocellulose in maize straw includes cellulose, hemicellulose, and lignin, and the degradation of lignocellulose is a complex process in which multiple enzymes are jointly involved. In exploring the co-degradation of a certain substrate by multiple enzymes, different enzymes are combined freely for the achievement of the effective synergism. Additionally, some organic acids and small molecule aromatic compounds can also increase the enzymatic activity of lignin enzymes and improve the degradation rate of lignin. In this study, manganese peroxidase (MnP) from Irpex lacteus (I. lacteus) was heterologously expressed in food-grade Schizosaccharomyces pombe (S. pombe). The multiple enzymes co-fermentation conditions were initially screened by orthogonal tests: 0.5% CaCl2, 1% 10,000 U/g Laccase (Lac), 0.3% MnSO4, and 0.4% glucose oxidase (GOD). It was showed that the lignin degradation rate could reach 65.85% after 3 days of synergistic degradation with the addition of 0.02% Tween-80, 0.5 mM oxalic acid. This indicates that oxalic acid has a promoting effect on the activity of MnP, and the promoting effect is more significant when Tween-80 is complexed with oxalic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Materials

The [DATA TYPE] data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Kun, L., Hongwu, W., Xiaojiao, H., Zhifang, L., Yujin, W., Changling, H., & Zabotina, O. A. (2016). Genome-wide association study reveals the genetic basis of stalk cell wall components in maize. PLoS One, 11(8), e0158906.

    Article  Google Scholar 

  2. Huang, S., Wu, Q., Zhou, D., Huang, R. (2015) Thermal decomposition properties of materials from different parts of corn stalk. BioResources, 10(2), 2020–2031. https://doi.org/10.15376/biores.10.2.2020-2031

  3. Katongole, C. B., BakEeVa, A., Passoth, V., & Lindberg, J. E. (2017). Effect of solid-state fermentation with Arxula adeninivorans or Hypocrea jecorina (anamorph Trichoderma reesei) on hygienic quality and in-vitro digestibility of banana peels by mono-gastric animals. Livestock Science, 199, 14–21.

    Article  Google Scholar 

  4. Li, Y., Yu, C., Zhu, W., & Tao, S. (2012). Effect of complex lactic acid bacteria on silage quality and in vitro dry matter digestibility of corn straw. Journal of Animal and Veterinary Advances, 11(9), 1395–1399.

    Article  Google Scholar 

  5. Yuan, H. A., Jd, A., Asms, B., Tmbm, C., Mak, C., Whh, A., & Jwc, A. (2019). The nutritional value of the lower maize stem cannot be improved by ensiling nor by a fungal treatment – Science direct. Animal Feed Science and Technology, 247, 92–102.

    Article  Google Scholar 

  6. Zeng, Y., Zhao, S., Yang, S., & Ding, S. Y. (2014). Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels. Current Opinion in Biotechnology, 27, 38–45.

    Article  CAS  PubMed  Google Scholar 

  7. Jin, Y., Na, Y., Tong, Q., Jin, Z., & Xu, X. (2016). Intensification of sodium hydroxide pretreatment of corn stalk using magnetic field in a fluidic system. Bioresource Technology, 220, 1–7.

    Article  CAS  PubMed  Google Scholar 

  8. Akpinar, M., & Ozturk, U. R. (2020). Decolorization and degradation potential of enhanced lignocellulolytic enzymes production by Pleurotus eryngii using cherry waste from industry. Biotechnology & Applied Biochemistry, 67(5), 760–773. https://doi.org/10.1002/bab.1846

    Article  CAS  Google Scholar 

  9. Li, K., Wang, H., Hu, X., Liu, Z., Wu, Y., Huang, C., & Zabotina, O. A. (2016). Genome-wide association study reveals the genetic basis of stalk cell wall components in maize. PLoS One, 11, e0158906.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Huang, S., Wu, Q., Zhou, D., & Huang, R. (2015). Thermal decomposition properties of materials from different parts of corn stalk. BioResources, 10, 2020.

    Article  Google Scholar 

  11. Awawdeh, M. S. (2011). Alternative feedstuffs and their effects on performance of Awassi sheep: A review. Tropical Animal Health and Production, 43, 1297–1309. https://doi.org/10.1007/s11250-011-9851-z

    Article  PubMed  Google Scholar 

  12. Xing, Q., Su, X., Luo, H., Rui, M., & Ma, F. (2018). Deciphering lignocellulose deconstruction by the white rot fungus Irpex lacteus based on genomic and transcriptomic analyses. Biotechnology for Biofuels, 11, 58.

    Article  Google Scholar 

  13. Zhang, S., Xiao, J., Wang, G., & Chen, G. (2020). Enzymatic hydrolysis of lignin by ligninolytic enzymes and analysis of the hydrolyzed lignin products. Bioresource Technology, 304, 122975.

    Article  CAS  PubMed  Google Scholar 

  14. Merino, C., Kuzyakov, Y., Godoy, K., Cornejo, P., & Matus, F. (2020). Synergy effect of peroxidase enzymes and Fenton reactions greatly increase the anaerobic oxidation of soil organic matter. Scientific Reports, 10(1), 1–12. https://doi.org/10.1038/s41598-020-67953-z

    Article  CAS  Google Scholar 

  15. Wang, F., Huang, F., & Ai, M. (2019). Synergetic depolymerization of aspen CEL by pyranose 2-oxidase and lignin-degrading peroxidases. BioResources, 14, 3481–3494.

    Article  CAS  Google Scholar 

  16. Wu, K., Yan, S., Lu, H., Li, H., & Wang, Q. (2016). Difference in the activity of extracellular Lignocellulolytic enzymes and the intracellular proteome of induced by different wood substrates. Scientia Silvae Sinicae, 52(8), 157–166. https://doi.org/10.11707/j.1001-7488.20160819

    Article  CAS  Google Scholar 

  17. Zhou-lei, C. U. I., Hong-cheng, W. A. N. G., Jun-ming, W. U., & Hua-you, C. H. E. N. (2020). Expression and enzymatic properties of a manganese peroxidase from Irpex Iacteus. Journal of Biology, 37(06), 46–50.

    CAS  Google Scholar 

  18. Mao, Y., Luo, B., & Hou, G. (2015). Uncertainly evaluation of determination of crude fiber in cottonsced meal by filter bag method[J]. China Feed. https://doi.org/10.15906/j.cnki.cn11-2975/s.20151808

    Article  Google Scholar 

  19. Rekik, H., Zaraî Jaouadi, N., Bouacem, K., et al. (2019). Physical and enzymatic properties of a new manganese peroxidase from the white-rot fungus Trametes pubescens strain i8 for lignin biodegradation and textile-dyes biodecolorization. International Journal of Biological Macromolecules, 125, 514–525. https://doi.org/10.1016/j.ijbiomac.2018.12.053

    Article  CAS  PubMed  Google Scholar 

  20. Crestini, C., Crucianelli, M., Orlandi, M., & Saladino, R. (2010). Oxidative strategies in lignin chemistry: A new environmental friendly approach for the functionalisation of lignin and lignocellulosic fibers. Catalysis Today, 156, 8–22.

    Article  CAS  Google Scholar 

  21. Fan, J., Lou, L., Zhang, L., et al. (2019). The effect of glucose oxidase, gluconic acid and honey-sosurced additives on growth performance and nutrient digestibility of Yellow broilers[J]. Animal Husbandry & Veterinary Medicine, 51(10), 26–30.

    Google Scholar 

  22. Tang, H., Gao, X., Yao, B., et al. (2015). Study on the bacteriostatic and acid producing effect of glucose oxidase in vitro[J]. Feed Industry, 36(10), 13–16. https://doi.org/10.13302/j.cnki.fi.2015.10.004

    Article  CAS  Google Scholar 

  23. Gong, Y., Zhang, C., Yan, Q., et al. (2015). Enhanced enzymatic hydrolysis of sugarcane bagasse hemicellulose using recombinant glucose oxidase expressed by Pichia pastoris. Industrial Crops & Products, 77, 458–466. https://doi.org/10.1016/j.indcrop.2015.07.038

    Article  CAS  Google Scholar 

  24. Glenn, J. K., & Gold, M. H. (1985). Purification and characterization of an extracellular Mn(II)-dependent peroxidase from the lignin-degrading basidiomycete, Phanerochaete chrysosporium. Archives of Biochemistry & Biophysics, 242, 329–341.

    Article  CAS  Google Scholar 

  25. Bermek, H., Li, K., & Eriksson, K. (2002). Studies on mediators of manganese peroxidase for bleaching of wood pulps. Bioresource Technology, 85, 249–252.

    Article  CAS  PubMed  Google Scholar 

  26. Alfi, A., Z§, Bo., Damnjanovi, J., et al. (2019). Production of active manganese peroxidase in Escherichia coli by co-expression of chaperones and invitro maturation by ATP-dependent chaperone release [J]. Journal of Bioscience and Bioengineering, 128(3), 290–295.

    Article  CAS  PubMed  Google Scholar 

  27. Ram, A., & F, J. (2014). The cell wall stress response in Aspergillus niger involves increased expression of the glutamine : Fructose-6-phosphate amidotransferase-encoding gene (gfaA) and increased deposition of chitin in the cell wall. Microbiology, 150(10), 3315–26.

    Article  Google Scholar 

  28. Morsi, R., Bilal, M., Iqbal, H. M. N., & Ashraf, S. S. (2020). Laccases and peroxidases: The smart, greener and futuristic biocatalytic tools to mitigate recalcitrant emerging pollutants. Science of The Total Environment, 714, 136572.

    Article  CAS  PubMed  Google Scholar 

  29. Mei, Y. U., Xiao-Wen, R., Tan, L. Q., et al. (2014). Study on impact factors of manganese-dependent peroxidase produced by white rot fungi[J]. Chemistry & Bioengineering, 11, 40–44. https://doi.org/10.3969/j.issn.0438-1157.2014.12.10

    Article  Google Scholar 

  30. Asther, M., Lesage, L., Drapron, R., Corrieu, G., & Odier, E. (1988). Phospholipid and fatty acid enrichment of Phanerochaete chrysosporium INA-12 in relation to ligninase production. Applied Microbiology & Biotechnology, 27, 393–398.

    Article  CAS  Google Scholar 

  31. Bao, W., Fukushima, Y., Jensen, K. A., Jr., Moen, M. A., & Hammel, K. E. (1994). Oxidative degradation of non-phenolic lignin during lipid peroxidation by fungal manganese peroxidase. FEBS Lett, 354(3), 297–300. https://doi.org/10.1016/0014-5793(94)01146-x

    Article  CAS  PubMed  Google Scholar 

  32. Wariishi, H., Valli, K., Renganathan, V., & Gold, M. H. (1989). Thiol-mediated oxidation of nonphenolic lignin model compounds by manganese peroxidase of Phanerochaete chrysosporium. Journal of Biological Chemistry, 264, 14185–14191.

    Article  CAS  PubMed  Google Scholar 

  33. Picart, P., Sevenich, M., María, P., & Schallmey, A. (2015). Exploring glutathione lyases as biocatalysts: Paving the way for enzymatic lignin depolymerization and future stereoselective applications. Green Chemistry, 17, 4931.

    Article  CAS  Google Scholar 

  34. Mori, T., Ikeda, K., Kawagishi, H., & Hirai, H. (2021). Improvement of saccharide yield from wood by simultaneous enzymatic delignification and saccharification using a ligninolytic enzyme and cellulase. Journal of Bioscience and Bioengineering, 132(3), 213–219. https://doi.org/10.1016/j.jbiosc.2021.04.016

    Article  CAS  PubMed  Google Scholar 

  35. Barbosa, A. M., Dekker, R., & Hardy, G. (2010). Veratryl alcohol as an inducer of laccase by an ascomycete, Botryosphaeria sp., when screened on the polymeric dye Poly R-478. Letters in Applied Microbiology, 23, 93–96.

    Article  Google Scholar 

  36. Niladevi, K. N., & Prema, P. (2008). Effect of inducers and process parameters on laccase production by Streptomyces psammoticus and its application in dye decolourization. Bioresource Technology, 99, 4583–4589.

    Article  CAS  PubMed  Google Scholar 

  37. Naveed, M., Muhammad, A., Tahir, I. M., et al. (2015). Utilization of agro-wastes for production of ligninolytic enzymes in liquid state fermentation by Phanerochaete chrysosporium-Ibl-03[J]. International Journal of Chemical and Biochemical Sciences, 7, 9–14.

    Google Scholar 

  38. Selvaraj, B., Sanjeevirayar, A., & Rajendran, A. (2015). Laccase production using mixed substrates containing lignocellulosic materials by Pleurotus ostreatus in submerged liquid culture. International Journal of ChemTech Research, 7, 355–368.

    Google Scholar 

  39. Elisashvili, V., & Kachlishvili, E. (2009). Physiological regulation of laccase and manganese peroxidase production by white-rot Basidiomycetes. Journal of Biotechnology, 144, 37–42.

    Article  CAS  PubMed  Google Scholar 

  40. Xing, Q., Su, X., Luo, H., et al. (2018). Deciphering lignocellulose deconstruction by the white rot fungus Irpex lacteus based on genomic and transcriptomic analyses. Biotechnology for Biofuels, 11(1), 58.

    Article  Google Scholar 

Download references

Funding

This study was financially supported by the national key research and development program (2021YFC2103004, 2021YFA0910402), by the Open Funding Project of the State Key Laboratory of Biochemical Engineering, China (2018KF-02), and by Key Research and Development Program (Social Development) of Zhenjiang City (SH2020021).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. All authors agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding authors

Correspondence to Huayou Chen or Hongcheng Wang.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Li, S., Cui, Z. et al. Synergistic Degradation of Maize Straw Lignin by Manganese Peroxidase from Irpex lacteus. Appl Biochem Biotechnol 195, 3855–3871 (2023). https://doi.org/10.1007/s12010-022-04189-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04189-9

Keywords

Navigation