Skip to main content
Log in

Molecular Characterization of the Functional Genes Associated with Silk Assembly, Transport, and Protection in the Silk Glands of Popular Multivoltine Breeds of Silkworm Bombyx mori. L

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Bombyx mori is an agriculturally important insect used extensively for silk production. India, especially the eastern regions, is mostly dependent on the multivoltine breeds of silkworm Bombyx mori and their hybrids/crossbreeds. The multivoltine breeds are indigenous and superior in survival and hardiness but are relatively inferior in terms of qualitative traits, typically the silk quality. Therefore, it is highly relevant to understand the mechanism of silk production in the multivoltine breeds to decipher the reasons for the inferior quality of silk produced by the multivoltine breeds and thus gain leads to improve the quality of silk production in multivoltine breeds. With this background, study was carried to identify differential expression of the major genes associated with silk proteins in the silk gland region of the popular multivoltine breeds. Our results indicated that although fib-L, fib-H, Sericins, and P25 are the major genes associated with silk filament, a few other genes associated with silk assembly, transport, and protection in the silk glands are the ones that largely contribute towards efficient silk production. The differential expression of these genes had a major effect on the movement of silk proteins within the silk gland and the efficiency of silk production as well. The Pearson correlation revealed a positive correlation amongst the genes dealt with in this study, indicating that the concurrent increase in expression of both the types of genes in the silk glands, significantly improves the silk production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  1. Shekar, K. C., & Basavaraja, H. K. (2008). Changes in qualitative and quantitative characters in bivoltine silkworm breeds of Bombyx mori L under different selection methods. Indian Journal of Sericulture, 47(2), 175–182.

    Google Scholar 

  2. Kariappa, B. K., & Rajan, R. K. (2004). Development of multivoltine silkworm breeds/hybrids in India for commercial exploitation. Indian Journal of Sericiculture, 25(3), 261–264.

    Google Scholar 

  3. Li, M. W., Yu, H. J., Yi, X. L., Li, J., Dai, F. Y., & Hou, C. X. (2015). Marker-assisted selection in breeding silkworm strains with high tolerance to fluoride, scaleless wings, and high silk production. Genetics and Molecular Research, 14(3), 11162–11170. https://doi.org/10.4238/2015 PMID: 26400347.

    Article  PubMed  Google Scholar 

  4. Wang, X., Li, Y., Peng, L., Chen, H., Xia, Q., & Zhao, P. (2016). Comparative transcriptome analysis of Bombyxmori spinnerets and Filippis glands suggests their role in silk fiber formation. Insect Biochemistry and Molecular Biology, 68, 89–99. https://doi.org/10.1016/j.ibmb.2015.11.003 PMID: 26592349.

    Article  CAS  PubMed  Google Scholar 

  5. Takasu, Y., Hata, T., Uchino, K., & Zhang, Q. (2010). Identification of Ser2 proteins as major sericin components in the non-cocoon silk of Bombyxmori. Insect Biochemistry and Molecular Biology, 40(4), 339–344. https://doi.org/10.1016/j.ibmb.2010.02.010 PMID: 20197092.

    Article  CAS  Google Scholar 

  6. Dong, Z., Zhao, P., Zhang, Y., Song, Q., Zhang, X., Guo, P., Wang, D., Xia, Q. (2016). Analysis of proteome dynamics inside the silk gland lumen of Bombyx mori. Sci Rep. https://doi.org/10.1038/srep21158.

  7. Bandyopadhyay, A., Chowdhury, S. K., & Dey, S. (2019). Silk: A promising biomaterial opening new vistas towards affordable healthcare solutions. Journal of the Indian Institute of Science, 99, 445–487. https://doi.org/10.1007/s41745-019-00114-y

    Article  Google Scholar 

  8. Lu, C., Li, B., Zhao, A., et al. (2004). QTL mapping of economically important traits in Silkworm (Bombyxmori). Science China Series C-Life Science., 47, 477–484. https://doi.org/10.1007/BF03187107

    Article  CAS  Google Scholar 

  9. Li, M., Shen, L., Xu, A., Miao, X., Hou, C., Sun, P., Zhang, Y., & Huang, Y. (2005). Genetic diversity among silkworm (Bombyx mori L., Lep., Bombycidae) germplasms revealed by microsatellites. Genome., 48(5), 802–10. https://doi.org/10.1139/g05-053 PMID: 16391686.

    Article  CAS  PubMed  Google Scholar 

  10. Sreekumar, S., Ashwath, S. K., Slathia, M., Kumar, S. N., & Qadri, S. M. H. (2011). Detection of single nucleotide polymorphism (SNP) DNA marker linked to cocoon traits in the mulberry silkworm. Bombyx mori European Journal of Entomology, 108, 347–354.

    Article  CAS  Google Scholar 

  11. RR, G. (1935). Colour inheritance in silkworms. Nature, 136(3433), 271.

    Article  Google Scholar 

  12. Rao, C. G., Seshagiri, S. V., Ramesh, C., Ibrahim Basha, K., Nagaraju, H., Chandrashekaraiah. (2006). Evaluation of genetic potential of the polyvoltine silkworm (Bombyx mori L.) germplasm and identification of parents for breeding programme. Journal of Zhejiang University Science B, 7(3), 215–220. https://doi.org/10.1631/jzus.2006.B0215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fang, S. M., Hu, B. L., Zhou, Q. Z., Yu, Q. Y., & Zhang, Z. (2015). Comparative analysis of the silk gland transcriptomes between the domestic and wild silkworms. BMC Genomics, 16(1), 60. https://doi.org/10.1186/s12864-015-1287-9 PMID: 25887670.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chang, H., Cheng, T., Wu, Y., Hu, W., Long, R., Liu, C., et al. (2015). Transcriptomic analysis of the anterior silk gland in the domestic silkworm (Bombyxmori) – Insight into the mechanism of silk formation and spinning. PLoS ONE, 10(9), e0139424. https://doi.org/10.1371/journal.pone.0139424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhou, C. Z., Confalonieri, F., Jacquet, M., Perasso, R., Li, Z. G., & Janin, J. (2001). Silk fibroin: Structural implications of a remarkable amino acid sequence. Proteins, 44(2), 119–122. https://doi.org/10.1002/prot.1078 PMID: 11391774.

    Article  CAS  PubMed  Google Scholar 

  16. Kundu, B., Rajkhowa, R., Kundu, S. C., & Wang, X. (2013). Silk fibroin biomaterials for tissue regenerations. Advanced Drug Delivery Reviews, 65(4), 457–470. https://doi.org/10.1016/j.addr.2012.09.043 Epub 2012 Nov 5 PMID: 23137786.

    Article  CAS  PubMed  Google Scholar 

  17. Inoue, S., Tanaka, K., Arisaka, F., Kimura, S., Ohtomo, K., & Mizuno, S. (2000). Silk fibroin of Bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and P25, with a 6:6:1 molar ratio. Journal of Biological Chemistry, 275(51), 40517–40528. https://doi.org/10.1074/jbc.M006897200 PMID: 10986287.

    Article  CAS  PubMed  Google Scholar 

  18. Rockwood, D. N., Preda, R. C., Yücel, T., Wang, X., Lovett, M. L., & Kaplan, D. L. (2011). Materials fabrication from Bombyxmori silk fibroin. Naionalt Protocol, 6(10), 1612–31. https://doi.org/10.1038/nprot.2011.379

    Article  CAS  Google Scholar 

  19. Zhou, L., Chen, X., Shao, Z., Huang, Y., & Knight, D. P. (2005). Effect of metallic ions on silk formation in the Mulberry silkworm. Bombyx mori Journal of Physical Chemistry B, 109(35), 16937–45. https://doi.org/10.1021/jp050883m PMID: 16853155.

    Article  CAS  PubMed  Google Scholar 

  20. Xia, Q. Y., Li, S., & Feng, Q. L. (2014). Advances in silkworm studies accelerated by the genome sequencing of Bombyx mori. Annual Review of Entomology, 59, 513–536. https://doi.org/10.1146/annurev-ento-011613-161940

    Article  CAS  PubMed  Google Scholar 

  21. Yi, Q., Zhao, P., Wang, X., Zou, Y., Zhong, X., Wang, C., et al. (2013). Shotgun proteomic analysis of the Bombyx mori anterior silk gland: An insight into the biosynthetic fiber spinning process. Proteomics, 13(17), 2657–2663. https://doi.org/10.1002/pmic.201200443 Epub 2013 Aug 5 PMID: 23828816.

    Article  CAS  PubMed  Google Scholar 

  22. Liang, J., Zhang, L., Xiang, Z., & He, N. (2010). Expression profile of cuticular genes of silkworm. Bombyx mori. BMC Genomics., 11, 173. https://doi.org/10.1186/1471-2164-11-173.PMCID:PMC2848646

    Article  PubMed  Google Scholar 

  23. Ma, L., Liu, S., Shi, M., Chen, X. X., & Li, S. (2013). Ras1CA-upregulated BCPI inhibits cathepsin activity to prevent tissue destruction of the Bombyx posterior silk gland. Journal of Proteome Research, 12(4), 1924–1934. https://doi.org/10.1021/pr400005g PMID: 23438485.

    Article  CAS  PubMed  Google Scholar 

  24. Zou, Z., Picheng, Z., Weng, H., Mita, K., & Jiang, H. (2009). A comparative analysis of serpin genes in the silkworm genome. Genomics, 93(4), 367–375. https://doi.org/10.1016/j.ygeno.2008.12.010.PMCID:PMC2772820

    Article  CAS  PubMed  Google Scholar 

  25. Kurioka, A., Masayoshi, Y., & Hirano, H. (1999). Primary structure and possible functions of a trypsin inhibitor of Bombyx mori. European Journal of Biochemistry, 259, 120–126. https://doi.org/10.1046/j.1432-1327.1999.00030.x

    Article  CAS  PubMed  Google Scholar 

  26. Seshagiri, S., Ramesha, C., & Rao, C. (2009). Genetic manifestation of hybrid vigor in cross breeds of mulberry silkworm, Bombyx mori L. International Journal Zoological Research, 5, 150–160. https://doi.org/10.3923/ijzr.2009.150.160

    Article  Google Scholar 

  27. Harjeet Singh, N., & Kumar, Suresh. (2010). On the breeding of bivoltine breeds of the silkworm Bombyx mori L. (Lepidoptera: Bombycidae), tolerant to high temperature and high humidity conditions of the tropics. Psyche A Journal of Entomology, 20(02), 45–59. https://doi.org/10.1155/2010/892452

    Article  Google Scholar 

  28. Islam, R., Rahman, M., Paul, D. K., & Sultana, S. (2003). Genetic analysis of different quantitative characters in silkworm Bombyx mori due to N-Nitroso-N-ethylurea. Journal of Biological sciences, 3, 1148–1152.

    Article  Google Scholar 

  29. Kumaresan, P., Koundinya, P. R., Hiremath, S. A., & Sinha, R. K. (2007). An analysis of genetic variation and divergence on silk fibre characteristics of multivoltine silkworm (Bombyx mori L.) genotypes. International Journal of Industrial Entomology, 14(1), 23–32.

    Google Scholar 

Download references

Funding

The funding for research work in this paper was supported by Central Silk Board, Ministry of Textiles Govt. of India. The author Dr. K. S. Tulsi Naik received the grant to carry out the research work under the project code AIT 3584.

Author information

Authors and Affiliations

Authors

Contributions

a) Study, conception, and design of the research work were contributed by Dr. Keremoole Subraya Tulsi Naik and Dr. Appukuttan Renjith Pradeep Nair.

b) Material preparation, data collection, and analysis were performed by Dr. Keremoole Subraya Tulsi Naik, Ms. Sahar Ismail, and Dr Appukuttan Renjith Pradeep Nair.

c) The concept and project were approved for implementation by Dr. Rakesh and Kumar Mishra.

d) The first draft of the manuscript was written by Dr. Keremoole Subraya Tulsi Naik and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to K. S. Tulsi Naik.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naik, K.S.T., Ismail, S., Pradeep, A.R. et al. Molecular Characterization of the Functional Genes Associated with Silk Assembly, Transport, and Protection in the Silk Glands of Popular Multivoltine Breeds of Silkworm Bombyx mori. L. Appl Biochem Biotechnol 195, 2371–2394 (2023). https://doi.org/10.1007/s12010-022-04158-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04158-2

Keywords

Navigation