Skip to main content

Advertisement

Log in

The Impact of Preservation Techniques on Methane-Arrested Anaerobic Digestion of Nutrient-Rich Feedstocks

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The carboxylate platform is a promising biomass-to-energy pathway that uses methane-arrested anaerobic digestion (MAAD) to convert biomass to carboxylic acids, which can be chemically converted to industrial chemicals and liquid fuels. Lignocellulose is an energy-rich carbon source, but lacks nutrients necessary for microbial growth. Chicken manure (rural waste) and sewage sludge (urban waste) are rich in nitrogen and useful macronutrients; therefore, co-digesting these wastes with lignocellulose improves MAAD performance. However, waste nutrients must be digested immediately, or preserved. This study investigated the effects of various preservation techniques — frozen (fresh), air-dried, and baked — on chicken manure and sewage sludge. Batch experiments were performed with office paper (carbon source) and chicken manure or sewage sludge (nutrient source) with different methods of preservation. Fresh substrates produced higher acid yields and biomass conversion (the amount of biomass consumed during digestion) than dried substrates. Baked chicken manure showed reduced conversion and total acid production, which suggests that oven-drying reduces digestibility. From the batch data, the Continuum Particle Distribution Model (CPDM) predicted results of a four-stage countercurrent digestion. The data are displayed on maps showing the impact of liquid residence time (LRT) and volatile solids loading rate (VSLR) on conversion and product concentration. Co-digesting office paper and wet chicken manure at a non-acid volatile solid (NAVS) concentration of 300 g/Lliq, the model predicted a high total acid concentration of 52.8 g/L and conversion of 0.89 g NAVSdigested/NAVSfed at a volatile solid loading rate of 4 g/(Lliq·day) and liquid retention time of 35 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable requests.

Abbreviations

MAAD:

Methane-arrested anaerobic digestion

CPDM:

Continuum Particle Distribution Model

C/N:

Carbon/nitrogen ratio

LRT:

Liquid residence time

VSLR:

Volatile solids loading rate

CM:

Chicken manure

SS:

Sewage sludge

BCM:

Paper and baked chicken manure

ACM:

Paper and air-dried chicken manure

WCM:

Paper and wet chicken manure

FCM:

Paper and fresh chicken manure

WSS:

Paper and wet sewage sludge

ADS:

Paper and air-dried sewage sludge

NAVS:

Non-acid volatile solids

VS:

Volatile solids

Aceq:

Acetate equivalent

References

  1. U.S. Energy Facts Explained. (2020). EIA. Retrieved March 2, 2021, from https://www.eia.gov/energyexplained/us-energy-facts/.

  2. Ragauskas, A. J., Williams, C. K., Davison, B. H., Britovsek, G., Cairney, J., Eckert, C. A., … Tschaplinski, T. (2006). The path forward for biofuels and biomaterials. Science, 311, 484–489.

  3. Granda, C. B., Holtzapple, M. T., Luce, G., Searcy, K., & Mamrosh, D. L. (2009). Carboxylate Platform: The MixAlco process Part 2: Process Economics. Applied Biochemistry and Biotechnology, 156(1), 107–124. https://doi.org/10.1007/s12010-008-8481-z

    Article  CAS  Google Scholar 

  4. Schmer, M. R., Vogel, K. P., Mitchell, R. B., & Perrin, R. K. (2008). Net energy of cellulosic ethanol from switchgrass. Proceedings of the National Academy of Sciences, 105(2), 464–469. https://doi.org/10.1073/pnas.0704767105

    Article  Google Scholar 

  5. Rughoonundun, H., & Holtzapple, M. T. (2017). Converting wastewater sludge and lime-treated sugarcane bagasse to mixed carboxylic acids – A potential pathway to ethanol biofuel production. Biomass and Bioenergy, 105, 73–82. https://doi.org/10.1016/j.biombioe.2017.06.007

    Article  CAS  Google Scholar 

  6. Minty, J. J., & Lin, X. N. (2015). Chapter 18 - Engineering synthetic microbial consortia for consolidated bioprocessing of ligonocellulosic biomass into valuable fuels and chemicals. In M. E. Himmel (Ed.), Direct Microbial Conversion of Biomass to Advanced Biofuels (pp. 365–381). Elsevier. https://doi.org/10.1016/B978-0-444-59592-8.00018-X.

  7. Lynd, L. R., van Zyl, W. H., McBride, J. E., & Laser, M. (2005). Consolidated bioprocessing of cellulosic biomass: An update. Current Opinion in Biotechnology, 16(5), 577–583. https://doi.org/10.1016/j.copbio.2005.08.009

    Article  CAS  Google Scholar 

  8. Murali, N., Srinivas, K., & Ahring, B. K. (2017). Biochemical production and separation of carboxylic acids for biorefinery applications. Fermentation, 3(2), 22. https://doi.org/10.3390/fermentation3020022

    Article  CAS  Google Scholar 

  9. Wu, H., Olokede, O., Hsu, S.-C., Roy, S., & Holtzapple, M. (2022). Enhancing semi-continuous carboxylic acid production from methane-arrested anaerobic digestion of cellulosic biomass by in-situ product removal with CO2-sustained anion-exchange resin adsorption.Journal of Cleaner Production, 133000.https://doi.org/10.1016/j.jclepro.2022.133000.

  10. Mills, T. Y., Sandoval, N. R., & Gill, R. T. (2009). Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli. Biotechnology for Biofuels, 2(1), 26. https://doi.org/10.1186/1754-6834-2-26

    Article  CAS  Google Scholar 

  11. Ross, M. K. (1998). Production of acetic acid from waste biomass. Doctoral dissertation. Texas A&M University, College Station. Texas A&M University, College Station (Doctoral dissertation). Texas A&M University. Retrieved from http://search.proquest.com/docview/304480915/abstract. Accessed 12 May 2021

  12. Fu, Z. (2009). Conversion of sugarcane bagasse to carboxylic acids under thermophilic conditions. Retrieved from https://oaktrust.library.tamu.edu/handle/1969.1/ETD-TAMU-1655. Accessed 12 May 2021

  13. Loescher, M. E. (1996). Volatile fatty acid fermentation of biomass and kinetic modeling using the CPDM method. Doctoral dissertation. Texas A&M University, College Station (Doctoral dissertation). Texas A & M University. Retrieved from https://www.proquest.com/docview/304362985?accountid=7082&parentSessionId=h7b%2BmMDq%2FMrIVjf5M2o9SgsYOAeaqmJwhqQX0hYaS%2BE%3D. Accessed 12 May 2021

  14. Darvekar, P. (2016). Assessment of shock pretreatment of corn stover using the carboxylate platform. Doctoral dissertation. Texas A&M University (Thesis). Retrieved from https://oaktrust.library.tamu.edu/handle/1969.1/157090. Accessed 12 May 2021

  15. Domke, S. B., Aiello-Mazzarri, C., & Holtzapple, M. T. (2004). Mixed acid fermentation of paper fines and industrial biosludge. Bioresource Technology, 91(1), 41–51. https://doi.org/10.1016/S0960-8524(03)00156-1

    Article  CAS  Google Scholar 

  16. Smith, A. D., & Holtzapple, M. T. (2011). Investigation of the optimal carbon–nitrogen ratio and carbohydrate–nutrient blend for mixed-acid batch fermentations. Bioresource Technology, 102(10), 5976–5987. https://doi.org/10.1016/j.biortech.2011.02.024

    Article  CAS  Google Scholar 

  17. US EPA, O. (2020). Basic information about biosolids. US EPA. Other Policies and Guidance. Retrieved October 13, 2020, from https://www.epa.gov/biosolids/basic-information-about-biosolids.

  18. Roy, S. (2014). Effect of extraction using ion-exchange resins on batch mixed-acid fermentations. master’s thesis. Texas A&M University (Thesis). Retrieved from https://oaktrust.library.tamu.edu/handle/1969.1/174664. Accessed 12 May 2021

  19. Rughoonundun, H., Granda, C., Mohee, R., & Holtzapple, M. T. (2010). Effect of thermochemical pretreatment on sewage sludge and its impact on carboxylic acids production. Waste Management, 30(8), 1614–1621. https://doi.org/10.1016/j.wasman.2010.03.017

    Article  CAS  Google Scholar 

  20. Hoover, N. L., Law, J. Y., Long, L. A. M., Kanwar, R. S., & Soupir, M. L. (2019). Long-term impact of poultry manure on crop yield, soil and water quality, and crop revenue. Journal of Environmental Management, 252, 109582. https://doi.org/10.1016/j.jenvman.2019.109582

    Article  CAS  Google Scholar 

  21. Poultry litter: issues and opportunities. (2008). The Poultry Site. Retrieved March 2, 2021, from https://www.thepoultrysite.com/articles/poultry-litter-issues-and-opportunities.

  22. Wu, H. (2018). Effect of carbon dioxide-sustained adsorption using ion exchange resin on mixed-acid fermentation. Master’s Thesis. Texas A&M University (Thesis). Retrieved from https://oaktrust.library.tamu.edu/handle/1969.1/174328. Accessed 12 May 2021

  23. Kayhanian, M., & Rich, D. (1995). Pilot-scale high solids thermophilic anaerobic digestion of municipal solid waste with an emphasis on nutrient requirements. Biomass and Bioenergy, 8(6), 433–444. https://doi.org/10.1016/0961-9534(95)00043-7

    Article  CAS  Google Scholar 

  24. Rughoonundun, H., Mohee, R., & Holtzapple, M. T. (2012). Influence of carbon-to-nitrogen ratio on the mixed-acid fermentation of wastewater sludge and pretreated bagasse. Bioresource Technology, 112, 91–97. https://doi.org/10.1016/j.biortech.2012.02.081

    Article  CAS  Google Scholar 

  25. Fu, Z., & Holtzapple, M. T. (2010). Consolidated bioprocessing of sugarcane bagasse and chicken manure to ammonium carboxylates by a mixed culture of marine microorganisms. Bioresource Technology, 101(8), 2825–2836. https://doi.org/10.1016/j.biortech.2009.11.104

    Article  CAS  Google Scholar 

  26. Olokede, O., Hsu, S., Ju, H., Helms, E., Broyles, A., & Holtzapple, M. (n.d.). Assessment of corn stover pretreated with shock and alkali using methane-arrested anaerobic digestion. Biotechnology Progress, n/a(n/a), e3257. https://doi.org/10.1002/btpr.3257.

  27. Golub, K. W. (2012). Effect of bioreactor mode of operation on mixed-acid fermentations. Doctoral dissertation. Texas A&M University. Retrieved from https://www.semanticscholar.org/paper/Effect-of-Bioreactor-Mode-of-Operation-on-Golub/8f890c2ed7699ba21e5238557f5ae6eb6707f153. Accessed 12 May 2021

  28. Roy, S., Olokede, O., Wu, H., & Holtzapple, M. (2021). In-situ carboxylic acid separation from mixed-acid fermentation of cellulosic substrates in batch culture. Biomass and Bioenergy, 151, 106165. https://doi.org/10.1016/j.biombioe.2021.106165

    Article  CAS  Google Scholar 

  29. Hollister, E. B., Forrest, A. K., Wilkinson, H. H., Ebbole, D. J., Malfatti, S. A., Tringe, S. G., & Gentry, T. J. (2010). Structure and dynamics of the microbial communities underlying the carboxylate platform for biofuel production. Applied Microbiology and Biotechnology, 88(1), 389–399. https://doi.org/10.1007/s00253-010-2789-7

  30. Holtzapple, M. T., Wu, H., Weimer, P. J., Dalke, R., Granda, C. B., Mai, J., & Urgun-Demirtas, M. (2021). Microbial communities for valorizing biomass using the carboxylate platform to produce volatile fatty acids: a review. Bioresource Technology, 126253.https://doi.org/10.1016/j.biortech.2021.126253.

  31. Datta, R. (1981). Acidogenic fermentation of corn stover. Biotechnology and Bioengineering, 23(1), 61–77. https://doi.org/10.1002/bit.260230106

    Article  CAS  Google Scholar 

  32. Chen, Y., Jiang, S., Yuan, H., Zhou, Q., & Gu, G. (2007). Hydrolysis and acidification of waste activated sludge at different pHs. Water Research, 41(3), 683–689. https://doi.org/10.1016/j.watres.2006.07.030

    Article  CAS  Google Scholar 

  33. Golub, K. W., Smith, A. D., Hollister, E. B., Gentry, T. J., & Holtzapple, M. T. (2011). Investigation of intermittent air exposure on four-stage and one-stage anaerobic semi-continuous mixed-acid fermentations. Bioresource Technology, 102(8), 5066–5075. https://doi.org/10.1016/j.biortech.2011.02.011

    Article  CAS  Google Scholar 

  34. Kalil, M. S., Alshiyab, H. S., & Yusoff, W. M. W. (2009). Effect of nitrogen source and carbon to nitrogen ratio on hydrogen production using C. acetobutylicum. American Journal of Biochemistry and Biotechnology, 4(4), 393–401. https://doi.org/10.3844/ajbbsp.2008.393.401.

  35. Morr, C. V. (1985). Functionality of heated milk proteins in dairy and related foods. Journal of Dairy Science, 68(10), 2773–2781. https://doi.org/10.3168/jds.S0022-0302(85)81165-6

    Article  CAS  Google Scholar 

  36. Microbial composition of poultry excreta. (1990). Biological Wastes, 33(2), 95–105. https://doi.org/10.1016/0269-7483(90)90150-Q.

  37. Nascimento, A. L., Souza, A. J., Andrade, P. A. M., Andreote, F. D., Coscione, A. R., Oliveira, F. C., & Regitano, J. B. (2018). Sewage sludge microbial structures and relations to their sources, treatments, and chemical attributes. Frontiers in Microbiology, 9, 1462. https://doi.org/10.3389/fmicb.2018.01462

    Article  Google Scholar 

Download references

Funding

This project was sponsored by internal funds from the Artie McFerrin Department of Chemical Engineering at Texas A&M University, College Station, Texas.

Author information

Authors and Affiliations

Authors

Contributions

OO: conceptualization, methodology, formal analysis, investigation, writing – original draft, visualization.

KL: conceptualization, methodology, formal analysis, investigation, writing – original draft, visualization.

MH: conceptualization, methodology, resources, writing – review & editing, supervision, project administration, funding acquisition.

Corresponding author

Correspondence to Opeyemi Olokede.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5784 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olokede, O., Liu, K. & Holtzapple, M. The Impact of Preservation Techniques on Methane-Arrested Anaerobic Digestion of Nutrient-Rich Feedstocks. Appl Biochem Biotechnol 195, 331–352 (2023). https://doi.org/10.1007/s12010-022-04149-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04149-3

Keywords

Navigation