Skip to main content
Log in

Sensitive miRNA Detection for Early Diagnosis of Psoriasis Based on Dual Signal Recycles

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) play a pivotal role in regulating a variety of biological processes and can be used as biomarkers for the early diagnosis of various diseases, such as psoriasis. Herein, we depict a simple and sensitive miRNA detection method based on dual signal recycles, which is developed on the basis of strand displacement amplification (SDA). The sensor is successfully applied to the detection of miRNA-21 with a wide linear range from 100 fM to 10 nM and a lower limit of detection (LOD) of 67 fM. Because of the simple operation yet improved detection capability, we thereby believe that the developed fluorescent biosensor can be potentially applied for early clinical diagnosis as well as biological researches.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data generated and analyzed during this study are included in this article.

References

  1. Lee, P. J., & Papachristou, G. I. (2019). New insights into acute pancreatitis. Nature Reviews. Gastroenterology & Hepatology, 16, 479–496.

    Article  CAS  Google Scholar 

  2. Mederos, M. A., Reber, H. A., & Girgis, M. D. (2021). Acute pancreatitis: A review. JAMA, 325, 382–390.

    Article  CAS  Google Scholar 

  3. Yang, A. L., & McNabb-Baltar, J. (2020). Hypertriglyceridemia and acute pancreatitis. Pancreatology, 20, 795–800.

    Article  CAS  Google Scholar 

  4. Wang, G. J., Gao, C. F., Wei, D., Wang, C., & Ding, S. Q. (2009). Acute pancreatitis: Etiology and common pathogenesis. World Journal of Gastroenterology, 15, 1427–1430.

    Article  Google Scholar 

  5. Mandalia, A., Wamsteker, E. J. and DiMagno, M. J. (2018). Recent advances in understanding and managing acute pancreatitis. F1000Res, 7.

  6. Xiang, H., Tao, X., Xia, S., Qu, J., Song, H., Liu, J., & Shang, D. (2017). Targeting microRNA function in acute pancreatitis. Frontiers in Physiology, 8, 726.

    Article  Google Scholar 

  7. Wen, C., Sun, H., Pan, K., Sun, H., Zhang, Z., Cao, G. and Wang, M. (2019). Molecular mechanism exploration of pancreatitis based on miRNA expression profile. Clin Lab, 65.

  8. Garcia-Rodriguez, S., Arias-Santiago, S., Blasco-Morente, G., Orgaz-Molina, J., Rosal-Vela, A., Navarro, P., Magro-Checa, C., Martinez-Lopez, A., Ruiz, J. C., Raya, E., Naranjo-Sintes, R., Sancho, J., & Zubiaur, M. (2017). Increased expression of microRNA-155 in peripheral blood mononuclear cells from psoriasis patients is related to disease activity. Journal of the European Academy of Dermatology and Venereology, 31, 312–322.

    Article  CAS  Google Scholar 

  9. Hawkes, J. E., Nguyen, G. H., Fujita, M., Florell, S. R., Callis Duffin, K., Krueger, G. G., & O’Connell, R. M. (2016). microRNAs in psoriasis. The Journal of Investigative Dermatology, 136, 365–371.

    Article  CAS  Google Scholar 

  10. Sileno, S., Beji, S., D’Agostino, M., Carassiti, A., Melillo, G., & Magenta, A. (2021). microRNAs involved in psoriasis and cardiovascular diseases. Vasc Biol, 3, R49–R68.

    Article  CAS  Google Scholar 

  11. Chen, C., Ridzon, D. A., Broomer, A. J., Zhou, Z., Lee, D. H., Nguyen, J. T., Barbisin, M., Xu, N. L., Mahuvakar, V. R., Andersen, M. R., Lao, K. Q., Livak, K. J., & Guegler, K. J. (2005). Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Research, 33, e179.

    Article  Google Scholar 

  12. Forero, D. A., Gonzalez-Giraldo, Y., Castro-Vega, L. J., & Barreto, G. E. (2019). qPCR-based methods for expression analysis of miRNAs. BioTechniques, 67, 192–199.

    Article  CAS  Google Scholar 

  13. Takei, F., Akiyama, M., Murata, A., Sugai, A., Nakatani, K., & Yamashita, I. (2020). RT-Hpro-PCR: A MicroRNA detection system using a primer with a DNA tag. ChemBioChem, 21, 477–480.

    Article  CAS  Google Scholar 

  14. Reid, M. S., Le, X. C., & Zhang, H. (2018). Exponential isothermal amplification of nucleic acids and assays for proteins, cells, small molecules, and enzyme activities: An EXPAR example. Angewandte Chemie (International ed. in English), 57, 11856–11866.

    Article  CAS  Google Scholar 

  15. Lobato, I. M., & O’Sullivan, C. K. (2018). Recombinase polymerase amplification: Basics, applications and recent advances. Trends Analyt Chem, 98, 19–35.

    Article  CAS  Google Scholar 

  16. Kim, H. Y., Song, J., & Park, H. G. (2021). Ultrasensitive isothermal method to detect microRNA based on target-induced chain amplification reaction. Biosensors & Bioelectronics, 178, 113048.

    Article  CAS  Google Scholar 

  17. Wang, R., Zhao, X., Chen, X., Qiu, X., Qing, G., Zhang, H., Zhang, L., Hu, X., He, Z., Zhong, D., Wang, Y., & Luo, Y. (2020). Rolling circular amplification (RCA)-assisted CRISPR/Cas9 cleavage (RACE) for highly specific detection of multiple extracellular vesicle MicroRNAs. Analytical Chemistry, 92, 2176–2185.

    Article  CAS  Google Scholar 

  18. Zhang, G. Z. L., Tong, J., Zhao, X., & Ren, J. (2020). CRISPR-Cas12a enhanced rolling circle amplification method for ultrasensitive miRNA detection. Microchemical Journal, 158, 105239.

    Article  CAS  Google Scholar 

  19. Zhao, X., Zhang, L., Gao, W., Yu, X., Gu, W., Fu, W., & Luo, Y. (2020). Spatiotemporally controllable MicroRNA imaging in living cells via a near-infrared light-activated nanoprobe. ACS Applied Materials & Interfaces, 12, 35958–35966.

    Article  CAS  Google Scholar 

  20. Zhou, W., Hu, L., Ying, L., Zhao, Z., Chu, P. K., & Yu, X. F. (2018). A CRISPR-Cas9-triggered strand displacement amplification method for ultrasensitive DNA detection. Nature Communications, 9, 5012.

    Article  Google Scholar 

  21. Gong, S., Zhang, S., Wang, X., Li, J., Pan, W., Li, N., & Tang, B. (2021). Strand displacement amplification assisted CRISPR-Cas12a strategy for colorimetric analysis of viral nucleic acid. Analytical Chemistry, 93, 15216–15223.

    Article  CAS  Google Scholar 

  22. Zhang, X. L., Liu, Y. H., Du, S. M., Yin, Y., Kong, L. Q., Chang, Y. Y., Chai, Y. Q., Li, Z. H., & Yuan, R. (2021). Engineering a rolling-circle strand displacement amplification mediated label-free ultrasensitive electrochemical biosensing platform. Analytical Chemistry, 93, 9568–9574.

    Article  Google Scholar 

  23. Xu, S. Y. (2015). Sequence-specific DNA nicking endonucleases. Biomol Concepts, 6, 253–267.

    Article  CAS  Google Scholar 

  24. Bustin, S. A., & Mueller, R. (2005). Real-time reverse transcription PCR (qRT-PCR) and its potential use in clinical diagnosis. Clinical Science (London, England), 109, 365–379.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the financial and equipment support from The Third Affiliated Hospital of Chongqing Medical University.

Author information

Authors and Affiliations

Authors

Contributions

Z.X. and Z.J. designed the strategy, completed the preparation of the research, and wrote the manuscript; Z.J. assisted data analysis.

Corresponding author

Correspondence to Xiaoqin Zhao.

Ethics declarations

Ethical Approval

Permission from the Institutional Animal Ethical Committee was received before making these experiments.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 48 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Zhao, X. Sensitive miRNA Detection for Early Diagnosis of Psoriasis Based on Dual Signal Recycles. Appl Biochem Biotechnol 195, 125–134 (2023). https://doi.org/10.1007/s12010-022-04114-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04114-0

Keywords

Navigation