Skip to main content

Polysaccharides of Weissella cibaria Act as a Prebiotic to Enhance the Probiotic Potential of Lactobacillus rhamnosus


This work aimed to investigate the effect of EPS (extracellular polysaccharide) of Weissella cibaria as a prebiotic to promote the growth and antibacterial properties of Lactobacillus rhamnosus. The morphological, growth behavior, and antibacterial properties of L. rhamnosus were determined in MRSB (de Man Rogosa Sharpe broth) supplemented with different concentrations of EPS (0.1–2%). The results revealed that the incorporation of the EPS (2%) in MRSA improved the bacterial growth in terms of colony-forming unit (CFU, 0.7 × 105 CFU/mL) compared to L. rhamnosus grown in bare MRSA. The SEM observation revealed that EPS incorporation in the MRSB culture media does not affect the morphological properties of L. rhamnosus. Moreover, it was confirmed that the extract of probiotics cultured in MRSA supplemented with EPS (2%) was exhibited strong antibacterial and antibiofilm activity against targeted pathogens. This L. rhamnosus extract was found to be biocompatible evidanced by erythrocyte hemolysis assay. These results confirmed that EPS regulates the growth of probiotics, resists pathogen infection, and biocompatibility.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data Availability

The data generated and analyzed during the current study are available from the corresponding author on reasonable request.


  1. Bermudez-Brito, M., Plaza-Díaz, J., Muñoz-Quezada, S., Gómez-Llorente, C., & Gil, A. (2012). Probiotic mechanisms of action. Annals of Nutrition and Metabolism, 61, 160–174.

    CAS  Article  Google Scholar 

  2. Brugger, S. D., Baumberger, C., Jost, M., Jenni, W., Brugger, U., & Mühlemann, K. (2012). Automated Counting of Bacterial Colony Forming Units on Agar Plates. PLoS ONE, 7, e33695.

    CAS  Article  Google Scholar 

  3. Chin-Lee, B., Curry, W. J., Fetterman, J., Graybill, M. A., & Karpa, K. (2014). Patient experience and use of probiotics in community-based health care settings. Patient Preference and Adherence, 8, 1513–1520.

    PubMed  PubMed Central  Google Scholar 

  4. Dlamini, A. M., Peiris, P. S., Bavor, J. H., & Kailasapathy, K. (2009). Rheological characteristics of an exopolysaccharide produced by a strain of Klebsiella oxytoca. Journal of Bioscience and Bioengineering, 107, 272–274.

    CAS  Article  Google Scholar 

  5. Feng, K., Zhai, M.-Y., Zhang, Y., Linhardt, R. J., Zong, M.-H., Li, L., & Wu, H. (2018). Improved viability and thermal stability of the probiotics encapsulated in a novel electrospun fiber mat. Journal of Agricultural and Food Chemistry, 66, 10890–10897.

    CAS  Article  Google Scholar 

  6. Gibson, G. R., & Roberfroid, M. B. (1995). Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. The Journal of Nutrition, 125, 1401–1412.

    CAS  Article  Google Scholar 

  7. Hlaing, M. M., Wood, B. R., McNaughton, D., Ying, D., Dumsday, G., & Augustin, M. A. (2017). Effect of drying methods on protein and DNA conformation changes in Lactobacillus rhamnosus GG cells by Fourier transform infrared spectroscopy. Journal of Agricultural and Food Chemistry, 65, 1724–1731.

    CAS  Article  Google Scholar 

  8. İspirli, H., Demirbaş, F., & Dertli, E. (2018). Glucan type exopolysaccharide (EPS) shows prebiotic effect and reduces syneresis in chocolate pudding. Journal of Food Science and Technology, 55, 3821–3826.

    Article  Google Scholar 

  9. Jahangirian, H., Halim, M., Ismail, M. H. S., RafieeMoghaddam, R., AfsahHejri, L., Abdollahi, Y., Rezayi, M., & Vafaei, N. (2013). Well diffusion method for evaluation of antibacterial activity of copper phenyl fatty hydroxamate synthesized from canola and palm kernel oils. Digest Journal of Nanomaterials and Biostructures, 8, 1263–1270.

    Google Scholar 

  10. Koch, A. L. (1996). WHAT SIZE SHOULD A BACTERIUM BE? A Question of Scale. Annual Review of Microbiology, 50, 317–348.

    CAS  Article  Google Scholar 

  11. Li, W., Xia, X., Tang, W., Ji, J., Rui, X., Chen, X., Jiang, M., Zhou, J., Zhang, Q., & Dong, M. (2015). Structural characterization and anticancer activity of cell-bound exopolysaccharide from Lactobacillus helveticus MB2-1. Journal of Agricultural and Food Chemistry, 63, 3454–3463.

    CAS  Article  Google Scholar 

  12. Markowiak, P., & Śliżewska, K. (2017). Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients, 9, 1021.

    Article  Google Scholar 

  13. Nagpal, R., & Kaur, A. (2011). Synbiotic Effect of Various Prebiotics on In Vitro Activities of Probiotic Lactobacilli. Ecology of Food and Nutrition, 50, 63–68.

    Article  Google Scholar 

  14. Naumann, D., Helm, D., & Schultz, C. (1994). Characterization and identification of micro-organisms by FT-IR spectroscopy and FT-IR microscopy. In F. G. Priest, A. Ramos-Cormenzana, & B. J. Tindall (Eds.), Bacterial diversity and systematics (pp. 67–85). Springer US.

  15. Nguyen, P.-T., Nguyen, T.-T., Bui, D.-C., Hong, P.-T., Hoang, Q.-K., & Nguyen, H.-T. (2020). Exopolysaccharide production by lactic acid bacteria: The manipulation of environmental stresses for industrial applications. AIMS Microbiol, 6, 451–469.

    CAS  Article  Google Scholar 

  16. Oust, A., Møretrø, T., Kirschner, C., Narvhus, J. A., & Kohler, A. (2004). FT-IR spectroscopy for identification of closely related lactobacilli. Journal of Microbiological Methods, 59, 149–162.

    CAS  Article  Google Scholar 

  17. Park, S., Saravanakumar, K., Sathiyaseelan, A., Park, S., Hu, X., & Wang, M.-H. (2022). Cellular antioxidant properties of nontoxic exopolysaccharide extracted from Lactobacillales (Weissella cibaria) isolated from Korean kimchi. LWT, 154, 112727.

    CAS  Article  Google Scholar 

  18. Rajendran, I., Dhandapani, H., Anantanarayanan, R., & Rajaram, R. (2015). Apigenin mediated gold nanoparticle synthesis and their anti-cancer effect on human epidermoid carcinoma (A431) cells. RSC Advances, 5, 51055–51066.

    CAS  Article  Google Scholar 

  19. Ribeiro, S. C., Stanton, C., Yang, B., Ross, R. P., & Silva, C. C. G. (2018). Conjugated linoleic acid production and probiotic assessment of Lactobacillus plantarum isolated from Pico cheese. LWT, 90, 403–411.

    CAS  Article  Google Scholar 

  20. Saravanakumar, K., Park, S., Sathiyaseelan, A., Mariadoss, A. V. A., Park, S., Kim, S.-J., & Wang, M.-H. (2021). Isolation of polysaccharides from Trichoderma harzianum with antioxidant, anticancer, and enzyme inhibition properties. Antioxidants, 10, 1372.

    CAS  Article  Google Scholar 

  21. Sharma, S., & Kanwar, S. S. (2018). Effect of prebiotics on growth behavior of Lactobacillus plantarum and their impact on adherence of strict anaerobic pathogens to intestinal cell lines. Journal of Food Safety, 38, e12384.

    Article  Google Scholar 

  22. Vuotto, C., Longo, F., & Donelli, G. (2014). Probiotics to counteract biofilm-associated infections: Promising and conflicting data. International Journal of Oral Science, 6, 189–194.

    Article  Google Scholar 

  23. Wang, X., Huang, M., Yang, F., Sun, H., Zhou, X., Guo, Y., Wang, X., & Zhang, M. (2015). Rapeseed polysaccharides as prebiotics on growth and acidifying activity of probiotics in vitro. Carbohydrate Polymers, 125, 232–240.

    CAS  Article  Google Scholar 

  24. Welman, A. D., & Maddox, I. S. (2003). Exopolysaccharides from lactic acid bacteria: Perspectives and challenges. Trends in Biotechnology, 21, 269–274.

    CAS  Article  Google Scholar 

  25. Wu, S., Xu, C., Zhu, Y., Zheng, L., Zhang, L., Hu, Y., Yu, B., Wang, Y., & Xu, F.-J. (2021). Biofilm-Sensitive Photodynamic Nanoparticles for Enhanced Penetration and Antibacterial Efficiency. Advanced Functional Materials, 31, 2103591.

    CAS  Article  Google Scholar 

  26. Yanti, Rukayadi, Y., Kim, K.-H., & Hwang, J.-K. (2008) In vitro anti-biofilm activity of macelignan isolated from Myristica fragrans Houtt. against oral primary colonizer bacteria. Phytotherapy Research, 22, 308-312.

  27. Zhu, Y., Liu, L., Sun, Z., Ji, Y., Wang, D., Mei, L., Shen, P., Li, Z., Tang, S., Zhang, H., Zhou, Q., & Deng, J. (2021). Fucoidan as a marine-origin prebiotic modulates the growth and antibacterial ability of Lactobacillus rhamnosus. International Journal of Biological Macromolecules, 180, 599–607.

    CAS  Article  Google Scholar 

Download references


This work was supported by Brain Pool Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2017H1D3A1A01052610), National Research Foundation of Korea (2019R1A1055452).

Author information

Authors and Affiliations



Soyoung Parka: formal analysis, investigation, methodology, writing—original draft. Kandasamy Saravanakumar: conceptualization, data curation, formal analysis, investigation, methodology, visualization, writing—original draft, writing—review and editing. Anbazhagan Sathiyaseelan: formal analysis, data curation. Ki-seok Han: formal analysis, investigation. Jooeun Lee: investigation, methodology. Myeong-Hyeon Wang: project administration, resources, supervision, validation, writing—review and editing.

Corresponding author

Correspondence to Myeong-Hyeon Wang.

Ethics declarations

Ethics Approval

This article does not contain any studies with animals or human participants.

Consent to Participate

The authors agreed to participate in this work.

Consent for Publication

The authors agreed to publish this work.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Park, S., Saravanakumar, K., Sathiyaseelan, A. et al. Polysaccharides of Weissella cibaria Act as a Prebiotic to Enhance the Probiotic Potential of Lactobacillus rhamnosus. Appl Biochem Biotechnol (2022).

Download citation

  • Accepted:

  • Published:

  • DOI:


  • Lactic acid bacteria
  • Probiotics
  • Polysaccharide
  • Prebiotics
  • Biocompatibility