Skip to main content

Advertisement

Log in

Oxygen- and Sulphur-Containing Heterocyclic Compounds as Potential Anticancer Agents

  • Review
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Oxygen- and sulphur-based heterocycles form the core structure of many biologically active molecules as well as U.S. FDA-approved drugs. Moreover, they possess broad range of biological activities, viz. anticancer, antiinflammatory, antioxidant, antitumour, antibacterial, antiviral, antidiabetic, anticonvulsant, anti-tubercular, analgesic, anti-leishmanial, antimalarial, antifungal, and anti-histaminic, Hence, O- and S-based heterocycles are gaining more attention in recent years on the road to the discovery of innovative anticancer drugs after the extensive investigation of nitrogen-based heterocycles as anticancer agents. Several attempts have been made to synthesize fused oxygen- and sulphur-based heterocyclic derivatives as joining one heterocyclic moiety with another may lead to improvement in the biological profile of a molecule. Humans have been cursed with cancer since long time. Despite the development of several heterocyclic anticancer medications such as 5-fluorouracil, doxorubicin, methotrexate, and daunorubicin, cure of cancer is difficult. Hence, researchers are trying to synthesize new fused/spiro heterocyclic molecules to discover novel anticancer drugs which may show promising anticancer effects with fewer side effects. Furthermore, fused heterocycles behave as DNA intercalating agents which have the ability to interact with DNA, leading to cell death thereby exerting anticancer effect. This review article highlights the synthesis and anticancer potentiality of oxygen- and sulphur-containing heterocyclic compounds covering the period from 2011 to 2021.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

Data Availability

Data and materials are incorporated in the whole manuscript. Figures are drawn in Chemdraw software and can be easily accessible.

References

  1. Irfan, A., Batool, F., Zahra Naqvi, S. A., Islam, A., Osman, S. M., Nocentini, A., Alissa, S. A., & Supuran, C. T. (2020). Benzothiazole derivatives as anticancer agents. Journal of Enzyme Inhibition and Medicinal Chemistry, 35, 265–79.

    Article  PubMed  CAS  Google Scholar 

  2. Ali, I., Nadeem Lone, M., Al-Othman, A. Z., Al-Warthan, A., & MarsinSanagi, M. (2015). Heterocyclic scaffolds: Centrality in anticancer drug development. Current Drug Targets, 16, 711–34.

    Article  PubMed  CAS  Google Scholar 

  3. Sachdeva, H., Mathur, J., & Guleria, A. (2020). Indole derivatives as potential anticancer agents: A review. Journal of the Chilean Chemical Society, 65(3), 4900–4907.

    Article  CAS  Google Scholar 

  4. Martins, P., Jesus, J., Santos, S., Raposo, L. R., Roma-Rodrigues, C., Baptista, P. V., & Fernandes, A. R. (2015). Heterocyclic anticancer compounds: Recent advances and the paradigm shift towards the use of nanomedicine’s tool box. Molecules, 20, 16852–16891.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Pearce, S. (2017) The importance of heterocyclic compounds in anti-cancer drug design. Drug Discovery, 67.

  6. Gao, F., Wang, T., Xiao, J., & Huang, G. (2019). Antibacterial activity study of 1, 2, 4-triazole derivatives. European Journal of Medicinal Chemistry, 173, 274–281.

    Article  PubMed  CAS  Google Scholar 

  7. Sharma, V., Gupta, M., Kumar, P., & Sharma, A. (2021). A comprehensive review on fused heterocyclic as DNA intercalators: Promising anticancer agents. Current Pharmaceutical Design., 27, 15–42.

    Article  PubMed  CAS  Google Scholar 

  8. Saraswat, P., Jeyabalan, G., Hassan, M. Z., Rahman, M. U., & Nyola, N. K. (2016). Review of synthesis and various biological activities of spiro heterocyclic compounds comprising oxindole and pyrrolidine moities. Synthetic Communications, 46, 1643–1664.

    Article  CAS  Google Scholar 

  9. Metwally, N. H., Abdelrazek, F. M., & Eldaly, S. M. (2016). Synthesis and anticancer activity of some new heterocyclic compounds based on 1-cyanoacetyl-3, 5-dimethylpyrazole. Research on Chemical Intermediates, 42, 1071–1089.

    Article  CAS  Google Scholar 

  10. Al-Mulla, A. (2017). A review: Biological importance of heterocyclic compounds. Der Pharma Chemica, 9, 141–147.

    CAS  Google Scholar 

  11. Belwal, S., Saritha, R., Sachdeva, H., & Kiran, G. (2019). Synthesis, characterization and prediction of anticancer potentiality of some novel green nanoparticles by molecular docking and ADMET techniques. Bulletin of the Chemical Society of Ethiopia, 33(3), 493–504.

    Article  CAS  Google Scholar 

  12. Darque, A., Dumètre, A., Hutter, S., Casano, G., Robin, M., Pannecouque, C., & Azas, N. (2009). Synthesis and biological evaluation of new heterocyclic quinolinones as anti-parasite and anti-HIV drug candidates. Bioorganic & Medicinal Chemistry Letters, 19, 5962–5964.

    Article  CAS  Google Scholar 

  13. Chernyshov, V. V., Yarovaya, O. I., Fadeev, D. S., Gatilov, Y. V., Esaulkova, Y. L., Muryleva, A. S., Sinegubova, K. O., Zarubaev, V. V., & Salakhutdinov, N. F. (2020). Single-stage synthesis of heterocyclic alkaloid-like compounds from (+)-camphoric acid and their antiviral activity. Molecular Diversity, 24, 61–67.

    Article  PubMed  CAS  Google Scholar 

  14. PKN, S., Sahoo, J., Paidesetty, S. K., and Mohanta, G. P. (2016) Thiazoles as potent anticancer agents: A review. Indian Drugs, 53, 11.

  15. Pathania, S., Narang, R. K., & Rawal, R. K. (2019). Role of sulphur-heterocycles in medicinal chemistry: An update. European Journal of Medicinal Chemistry, 180, 486–508.

    Article  PubMed  CAS  Google Scholar 

  16. Shah, J. J., Stadtmauer, E. A., Abonour, R., Cohen, A. D., Bensinger, W. I., Gasparetto, C., Kaufman, J. L., Lentzsch, S., Vogl, D. T., Gomes, C. L., & Pascucci, N. (2015). Carfilzomib, pomalidomide, and dexamethasone for relapsed or refractory myeloma. Blood, The Journal of the American Society of Hematology, 126, 2284–2290.

    CAS  Google Scholar 

  17. Zhou, H. J., Aujay, M. A., Bennett, M. K., Dajee, M., Demo, S. D., Fang, Y., Ho, M. N., Jiang, J., Kirk, C. J., Laidig, G. J., & Lewis, E. R. (2009). Design and synthesis of an orally bioavailable and selective peptide epoxyketone proteasome inhibitor (PR-047). Journal of Medicinal Chemistry, 52, 3028–3038.

    Article  PubMed  CAS  Google Scholar 

  18. Thomas, E. S., Gomez, H. L., Li, R. K., Chung, H. C., Fein, L. E., Chan, V. F., Jassem, J., Pivot, X. B., Klimovsky, J. V., De Mendoza, F. H., & Xu, B. (2007). Ixabepilone plus capecitabine for metastatic breast cancer progressing after anthracycline and taxane treatment. Journal of Clinical Oncology, 25, 5210–5217.

    Article  PubMed  CAS  Google Scholar 

  19. Liu, G., Chen, Y. H., DiPaola, R., Carducci, M., & Wilding, G. (2012). Phase II trial of weekly ixabepilone in men with metastatic castrate-resistant prostate cancer (E3803): A trial of the Eastern Cooperative Oncology Group. Clinical Genitourinary Cancer, 10, 99–105.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Aghajanian, C., Burris, H. A., III., Jones, S., Spriggs, D. R., Cohen, M. B., Peck, R., Sabbatini, P., Hensley, M. L., Greco, F. A., Dupont, J., & O’Connor, O. A. (2007). Phase I study of the novel epothilone analog ixabepilone (BMS-247550) in patients with advanced solid tumors and lymphomas. Journal of Clinical Oncology, 25, 1082–1088.

    Article  PubMed  CAS  Google Scholar 

  21. Mandelbaum-Shavit, F., Wolpert-DeFilippes, M. K., & Johns, D. G. (1976). Binding of maytansine to rat brain tubulin. Biochemical and Biophysical Research Communications, 72, 47–54.

    Article  PubMed  CAS  Google Scholar 

  22. Khatik, G. L., Kaur, J., Kumar, V., Tikoo, K., & Nair, V. A. (2012). 1, 2, 4-Oxadiazoles: A new class of anti-prostate cancer agents. Bioorganic & Medicinal Chemistry Letters, 22, 1912–1916.

    Article  CAS  Google Scholar 

  23. Lopus, M. (2011). Antibody-DM1 conjugates as cancer therapeutics. Cancer Letters, 307, 113–118.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Chari, R. V., Martell, B. A., Gross, J. L., Cook, S. B., Shah, S. A., Blättler, W. A., McKenzie, S. J., & Goldmacher, V. S. (1992). Immunoconjugates containing novel maytansinoids: Promising anticancer drugs. Cancer Research, 52, 127–131.

    PubMed  CAS  Google Scholar 

  25. Fossella, F., McCann, J., Tolcher, A., Xie, H., Hwang, L. L., Carr, C., Berg, K., & Fram, R. (2005). Phase II trial of BB-10901 (huN901-DM1) given weekly for four consecutive weeks every 6 weeks in patients with relapsed SCLC and CD56-positive small cell carcinoma. Journal of Clinical Oncology, 23, 7159.

    Article  Google Scholar 

  26. Krop, I., & Winer, E. P. (2014). Trastuzumab emtansine: A novel antibody–drug conjugate for HER2-positive breast cancer. Clinical Cancer Research, 20, 15–20.

    Article  PubMed  CAS  Google Scholar 

  27. He, J., Ling, J., & Chiu, P. (2014). Vinyl epoxides in organic synthesis. Chemical Reviews, 114(16), 8037–8128.

    Article  PubMed  CAS  Google Scholar 

  28. Chen, X., Winstead, A., Yu, H., & Peng, J. (2021). Taccalonolides: A novel class of microtubule-stabilizing anticancer agents. Cancers, 13(4), 920.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Gomes, A. R., Varela, C. L., Tavares-da-Silva, E. J., & Roleira, F. M. (2020). Epoxide containing molecules: A good or a bad drug design approach. European Journal of Medicinal Chemistry, 201, 112327.

    Article  PubMed  CAS  Google Scholar 

  30. Abdolmohammadi, M. H., Fallahian, F., Ghanadian, M., Mirjani, A., & Aghaei, M. (2021). New diterpene compound from Euphorbia connate Boiss., 3, 7, 14, 15-tetraacetyl-5-propanoyl-13 (17)-epoxy-8, 10 (18)-myrsinadiene, inhibits the growth of ovarian cancer cells by promoting mitochondrial-mediated apoptosis. Nutrition and Cancer, 73(10), 2030–8.

    Article  PubMed  CAS  Google Scholar 

  31. Cullen, J. K., Boyle, G. M., Yap, P. Y., Elmlinger, S., Simmons, J. L., Broit, N., Johns, J., Ferguson, B., Maslovskaya, L. A., Savchenko, A. I., & Mirzayans, P. M. (2021). Activation of sPKC supports the anticancer activity of tigilanol tiglate and related epoxytiglianes. Scientific Reports, 11(1), 1–4.

    Article  Google Scholar 

  32. Guo, J., Sun, X., & Yu, S. (2014). Diastereoselective synthesis of epoxide-fused benzoquinolizidine derivatives using intramolecular domino aza-Michael addition/Darzens reaction. Organic & Biomolecular Chemistry, 12(2), 265–268.

    Article  CAS  Google Scholar 

  33. Figueroa-Valverde, L., Francisco, D. C., Maria, L. R., Marcela, R. N., Virginia, M. A., Tomas, L. G., & Magdalena, A. R. (2021). Design and synthesis of two epoxide derivatives from 3-ethynylaniline. Journal of Heterocyclic Chemistry, 58(5), 1154–1163.

    Article  CAS  Google Scholar 

  34. Lin, H., Liu, J. Y., Wang, H. B., Ahmed, A. A., & Wu, Z. L. (2011). Biocatalysis as an alternative for the production of chiral epoxides: A comparative review. Journal of Molecular Catalysis B: Enzymatic, 72(3–4), 77–89.

    Article  CAS  Google Scholar 

  35. Kumar, V. P., & Chandrasekhar, S. (2013). Enantioselective synthesis of pladienolide B and truncated analogues as new anticancer agents. Organic Letters, 15(14), 3610–3613.

    Article  PubMed  CAS  Google Scholar 

  36. Wang, P., Yuan, H. H., Zhang, X., Li, Y. P., Shang, L. Q., & Yin, Z. (2014). Novel lycorine derivatives as anticancer agents: Synthesis and in vitro biological evaluation. Molecules, 19(2), 2469–2480.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Preet, R., Chakraborty, B., Siddharth, S., Mohapatra, P., Das, D., Satapathy, S. R., Das, S., Maiti, N. C., Maulik, P. R., Kundu, C. N., & Chowdhury, C. (2014). Synthesis and biological evaluation of andrographolide analogues as anti-cancer agents. European Journal of Medicinal Chemistry, 85, 95–106.

    Article  PubMed  CAS  Google Scholar 

  38. Han, H., Zhao, Y., Cuthbertson, T., Hartman, R. F., & Rose, S. D. (2010). Cell cycle arrest and apoptosis induction by an anticancer chalcone epoxide. Archiv der Pharmazie, 343(8), 429–439.

    Article  PubMed  CAS  Google Scholar 

  39. Kos, J., Mitrović, A., & Mirković, B. (2014). The current stage of cathepsin B inhibitors as potential anticancer agents. Future Medicinal Chemistry, 6(11), 1355–1371.

    Article  PubMed  CAS  Google Scholar 

  40. Carvalho, J. F., Silva, M. M., Moreira, J. N., Simoes, S., & Sá e Melo, M. L. (2010). Sterols as anticancer agents: Synthesis of ring-B oxygenated steroids, cytotoxic profile, and comprehensive SAR analysis. Journal of Medicinal Chemistry, 53(21), 7632–8.

    Article  PubMed  CAS  Google Scholar 

  41. Dembitsky, V. M., Gloriozova, T. A., & Poroikov, V. V. (2018). Naturally occurring marine α, β-epoxy steroids: Origin and biological activities. Vietnam Journal of Chemistry, 56(4), 409–433.

    Article  CAS  Google Scholar 

  42. Han, Q., Ma, Y., Wang, H., Dai, Y., Chen, C., Liu, Y., Jing, L., & Sun, X. (2018). Resibufogenin suppresses colorectal cancer growth and metastasis through RIP3-mediated necroptosis. Journal of Translational Medicine, 16, 1–3.

    Article  Google Scholar 

  43. Salvador, J. A., Carvalho, J. F., Neves, M. A., Silvestre, S. M., Leitao, A. J., Silva, M. M., & e Melo ML. (2013). Anticancer steroids: Linking natural and semi-synthetic compounds. Natural Product Reports, 30(2), 324–374.

    Article  PubMed  CAS  Google Scholar 

  44. Ferreira, I. C. F. R., Vaz J. A., Vasconcelos, M. H., Martins, A. (2010). Compounds from wild mushrooms with antitumor potential. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents). 10(5), 424–36.

  45. Jo, H., Seo, S. H., Na, Y., & Kwon, Y. (2019). The synthesis and anticancer activities of chiral epoxy-substituted chromone analogs. Bioorganic Chemistry, 84, 347–354.

    Article  PubMed  Google Scholar 

  46. Zhou, W., Chen, X., He, K., Xiao, J., Duan, X., Huang, R., Xia, Z., He, J., Zhang, J., & Xiang, G. (2016). Histone deacetylase inhibitor screening identifies HC toxin as the most effective in intrahepatic cholangiocarcinoma cells. Oncology Reports, 35, 2535–2542.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Dembitsky, V. M. (2021). In silico prediction of steroids and triterpenoids as potential regulators of lipid metabolism. Marine Drugs, 19(11), 650.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Mbaoji, F. N., Nweze, J. A., Yang, L., Huang, Y., Huang, S., Onwuka, A. M., Peter, I. E., Mbaoji, C. C., Jiang, M., Zhang, Y., & Pan, L. (2021). Novel marine secondary metabolites worthy of development as anticancer agents: A review. Molecules, 26(19), 5769.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Du, L., Risinger, A. L., King, J. B., Powell, D. R., & Cichewicz, R. H. (2014). A potent HDAC inhibitor, 1-alaninechlamydocin, from a Tolypocladium sp. induces G2/M cell cycle arrest and apoptosis in MIA PaCa-2 cells. Journal of Natural Products, 77, 1753–1757.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Vil, V., Gloriozova, T. A., Poroikov, V. V., Terent’ev, A. O., Savidov, N., & Dembitsky, V. M. (2019). Naturally occurring of α, β-diepoxy-containing compounds: Origin, structures, and biological activities. Applied Microbiology and Biotechnology, 103(8), 3249–64.

    Article  PubMed  CAS  Google Scholar 

  51. Smith, C. D., & Zhang, X. (1996). Mechanism of action of cryptophycin: Interaction with the Vinca alkaloid domain of tubulin (∗). Journal of Biological Chemistry, 271, 6192–6198.

    Article  PubMed  CAS  Google Scholar 

  52. Raina, H., Soni, G., Jauhari, N., Sharma, N., & Bharadvaja, N. (2014). Phytochemical importance of medicinal plants as potential sources of anticancer agents. Turkish Journal of Botany, 38(6), 1027–1035.

    Article  Google Scholar 

  53. Savić, M. P., Kuzminac, I. Z., Škorić, D. Đ, Jakimov, D. S., Rárová, L., Sakač, M. N., & Djurendić, E. A. (2020). New oxygen-containing androstane derivatives: Synthesis and biological potential. Journal of Chemical Sciences, 132(1), 1.

    Article  Google Scholar 

  54. Ren, Y., de Blanco, E. J., Fuchs, J. R., Soejarto, D. D., Burdette, J. E., Swanson, S. M., & Kinghorn, A. D. (2019). Potential anticancer agents characterized from selected tropical plants. Journal of Natural Products, 82(3), 657–679.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Bull, J. A., Croft, R. A., Davis, O. A., Doran, R., & Morgan, K. F. (2016). Oxetanes: Recent advances in synthesis, reactivity, and medicinal chemistry. Chemical Reviews, 116(19), 12150–12233.

    Article  PubMed  CAS  Google Scholar 

  56. Toselli, F., Fredenwall, M., Svensson, P., Li, X. Q., Johansson, A., Weidolf, L., & Hayes, M. A. (2019). Hip to be square: Oxetanes as design elements to alter metabolic pathways. Journal of Medicinal Chemistry, 62(16), 7383–7399.

    Article  PubMed  CAS  Google Scholar 

  57. Zhicheng, F., & Jiaxi, X. (2021). Synthesis of oxetanes. Progress in Chemistry, 33(6), 895.

    Google Scholar 

  58. Haoran, W., Akhtar, W., Nainwal, L. M., Kaushik, S. K., Akhter, M., Shaquiquzzaman, M., & Alam, M. M. (2020). Synthesis and biological evaluation of benzimidazole pendant cyanopyrimidine derivatives as anticancer agents. Journal of Heterocyclic Chemistry, 57(9), 3350–3360.

    CAS  Google Scholar 

  59. Sharifi-Rad, J., Quispe, C., Patra, J. K., Singh, Y. D., Panda, M. K., Das, G., Adetunji, C. O., Michael, O. S., Sytar, O., Polito, L., & Živković, J. (2021). Paclitaxel: Application in modern oncology and nanomedicine-based cancer therapy. Oxidative Medicine and Cellular Longevity, 18, 2021.

    Google Scholar 

  60. Deshmukh, S. R., & Thopate, S. R. (2019). C2/C3 alkynylation of l-ascorbic acid by Sonogashira coupling and efficient access to some potent and highly selective novel anticancer agents. New Journal of Chemistry, 43(1), 208–216.

    Article  CAS  Google Scholar 

  61. Delost, M. D., Smith, D. T., Anderson, B. J., & Njardarson, J. T. (2018). From oxiranes to oligomers: Architectures of US FDA approved pharmaceuticals containing oxygen heterocycles. Journal of Medicinal Chemistry, 61(24), 10996–11020.

    Article  PubMed  CAS  Google Scholar 

  62. Dubois, M. A., Smith, M. A., White, A. J., Lee, W., Jie, A., Mousseau, J. J., Choi, C., & Bull, J. A. (2020). Short synthesis of oxetane and azetidine 3-aryl-3-carboxylic acid derivatives by selective furan oxidative cleavage. Organic Letters, 22(14), 5279–5283.

    Article  PubMed  CAS  Google Scholar 

  63. Ravelli, D., Zoccolillo, M., Mella, M., & Fagnoni, M. (2014). Photocatalytic synthesis of oxetane derivatives by selective C-H activation. Advanced Synthesis & Catalysis, 356(13), 2781–2786.

    Article  CAS  Google Scholar 

  64. Vil, V., Terent’ev, A. O., Al Quntar, A. A., Gloriozova, T. A., Savidov, N., & Dembitsky, V. M. (2019). Oxetane-containing metabolites: Origin, structures, and biological activities. Applied Microbiology and Biotechnology, 103(6), 2449–67.

    Article  PubMed  CAS  Google Scholar 

  65. Davis, O. A., Croft, R. A., & Bull, J. A. (2015). Synthesis of diversely functionalised 2, 2-disubstituted oxetanes: Fragment motifs in new chemical space. Chemical Communications, 51(84), 15446–15449.

    Article  PubMed  CAS  Google Scholar 

  66. Beadle, J. D., Knuhtsen, A., Hoose, A., Raubo, P., Jamieson, A. G., & Shipman, M. (2017). Solid-phase synthesis of oxetane modified peptides. Organic Letters, 19(12), 3303–3306.

    Article  PubMed  CAS  Google Scholar 

  67. Conboy, D., Mirallai, S. I., Craig, A., McArdle, P., Al-Kinani, A. A., Barton, S., & Aldabbagh, F. (2019). Incorporating morpholine and oxetane into benzimidazolequinone antitumor agents: The discovery of 1, 4, 6, 9-tetramethoxyphenazine from hydrogen peroxide and hydroiodic acid-mediated oxidative cyclizations. The Journal of Organic Chemistry, 84(15), 9811–9818.

    Article  PubMed  CAS  Google Scholar 

  68. Burkhard, J. A., Wuitschik, G., Plancher, J. M., Rogers-Evans, M., & Carreira, E. M. (2013). Synthesis and stability of oxetane analogs of thalidomide and lenalidomide. Organic Letters, 15(17), 4312–4315.

    Article  PubMed  CAS  Google Scholar 

  69. Roesner, S., Beadle, J. D., Tam, L. K., Wilkening, I., Clarkson, G. J., Raubo, P., & Shipman, M. (2020). Development of oxetane modified building blocks for peptide synthesis. Organic & Biomolecular Chemistry, 18(28), 5400–5405.

    Article  CAS  Google Scholar 

  70. Powell, N. H., Clarkson, G. J., Notman, R., Raubo, P., Martin, N. G., & Shipman, M. (2014). Synthesis and structure of oxetane containing tripeptide motifs. Chemical Communications, 50(63), 8797–8800.

    Article  PubMed  CAS  Google Scholar 

  71. Deshmukh, S. R., & Thopate, S. R. (2018). Synthesis of novel fused regioisomeric oxetane bicycles via Paternò-Büchi reaction of L-ascorbic acid and evaluation as antiproliferative agents. Current Organic Synthesis, 15(7), 995–1004.

    Article  CAS  Google Scholar 

  72. Yaragani, M., Yadlapalli, P., Raghavan, S., Ayyadurai, N., Chinnusamy, S., Mandava, V. B., & Kottapalli, R. P. (2020). Design and synthesis of novel tetrahydrofuran cyclic urea derivatives as androgen receptor antagonists. Journal of Chemical Sciences, 132(1), 1–2.

    Article  Google Scholar 

  73. Cheong, J. E., Zaffagni, M., Chung, I., Xu, Y., Wang, Y., Jernigan, F. E., Zetter, B. R., & Sun, L. (2018). Synthesis and anticancer activity of novel water soluble benzimidazole carbamates. European Journal of Medicinal Chemistry, 144, 372–385.

    Article  PubMed  CAS  Google Scholar 

  74. Fridlender, M., Kapulnik, Y., & Koltai, H. (2015). Plant derived substances with anti-cancer activity: From folklore to practice. Frontiers in Plant Science, 6, 799.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Gunatilaka, A. L., Ramdayal, F. D., Sarragiotto, M. H., Kingston, D. G., Sackett, D. L., & Hamel, E. (1999). Synthesis and biological evaluation of novel paclitaxel (Taxol) D-ring modified analogues. The Journal of Organic Chemistry, 64(8), 2694–2703.

    Article  PubMed  CAS  Google Scholar 

  76. Trmcic, M. V., Matovic, R. V., Tovilovic, G. I., Ristic, B. Z., Trajkovic, V. S., Ferjancic, Z. B., & Saicic, R. N. (2012). A novel C, D-spirolactone analogue of paclitaxel: Autophagy instead of apoptosis as a previously unknown mechanism of cytotoxic action for taxoids. Organic & Biomolecular Chemistry, 10(25), 4933–4942.

    Article  CAS  Google Scholar 

  77. Banerjee, S., Hwang, D. J., Li, W., & Miller, D. D. (2016). Current advances of tubulin inhibitors in nanoparticle drug delivery and vascular disruption/angiogenesis. Molecules, 21, 1468.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Faria, R. S., de Lima, L. I., Bonadio, R. S., Longo, J. P., Roque, M. C., de Matos Neto, J. N., Moya, S. E., de Oliveira, M. C., & Azevedo, R. B. (2021). Liposomal paclitaxel induces apoptosis, cell death, inhibition of migration capacity and antitumoral activity in ovarian cancer. Biomedicine & Pharmacotherapy, 142, 112000.

    Article  CAS  Google Scholar 

  79. Fayed, E. A., Sabour, R., Harras, M. F., & Mehany, A. B. (2019). Design, synthesis, biological evaluation and molecular modeling of new coumarin derivatives as potent anticancer agents. Medicinal Chemistry Research, 28(8), 1284–1297.

    Article  CAS  Google Scholar 

  80. Yadagiri, B., Holagunda, U. D., Bantu, R., Nagarapu, L., Kumar, C. G., Pombala, S., & Sridhar, B. (2014). Synthesis of novel building blocks of benzosuberone bearing coumarin moieties and their evaluation as potential anticancer agents. European Journal of Medicinal Chemistry, 79, 260–265.

    Article  PubMed  CAS  Google Scholar 

  81. Liu, N., Li, X., Huang, H., Zhao, C., Liao, S., Yang, C., Liu, S., Song, W., Lu, X., Lan, X., & Chen, X. (2014). Clinically used antirheumatic agent auranofin is a proteasomal deubiquitinase inhibitor and inhibits tumor growth. Oncotarget, 5, 5453.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Kinoshita, H., Shimozato, O., Ishii, T., Kamoda, H., Hagiwara, Y., Tsukanishi, T., Ohtori, S., & Yonemoto, T. (2021). The thioredoxin reductase inhibitor auranofin suppresses pulmonary metastasis of osteosarcoma, but not local progression. Anticancer Research, 41(10), 4947–4955.

    Article  PubMed  CAS  Google Scholar 

  83. Kim, N. H., Park, H. J., Oh, M. K., & Kim, I. S. (2013). Antiproliferative effect of gold (I) compound auranofin through inhibition of STAT3 and telomerase activity in MDA-MB 231 human breast cancer cells. BMB Reports, 46, 59–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Murti, Y., & Mishra, P. (2014). Synthesis and evaluation of flavanones as anticancer agents. Indian Journal of Pharmaceutical Sciences, 76, 163.

    PubMed  PubMed Central  CAS  Google Scholar 

  85. Khanam, H. (2015). Bioactive benzofuran derivatives: A review. European Journal of Medicinal Chemistry, 97, 483–504.

    Article  PubMed  CAS  Google Scholar 

  86. Napiórkowska, M., Cieślak, M., Kaźmierczak-Barańska, J., Królewska-Golińska, K., & Nawrot, B. (2019). Synthesis of new derivatives of benzofuran as potential anticancer agents. Molecules, 24(8), 1529.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Swamy, P. M., Prasad, Y. R., Ashvini, H. M., Giles, D., Shashidhar, B. V., & Agasimundin, Y. S. (2015). Synthesis, anticancer and molecular docking studies of benzofuran derivatives. Medicinal Chemistry Research, 24(9), 3437–3452.

    Article  CAS  Google Scholar 

  88. Choi, M., Jo, H., Park, H. J., Kumar, A. S., Lee, J., Yun, J., Kim, Y., Han, S. B., Jung, J. K., Cho, J., & Lee, K. (2015). Design, synthesis, and biological evaluation of benzofuran-and 2, 3-dihydrobenzofuran-2-carboxylic acid N-(substituted) phenylamide derivatives as anticancer agents and inhibitors of NF-κB. Bioorganic & Medicinal Chemistry Letters, 25, 2545–2549.

    Article  CAS  Google Scholar 

  89. Rodrigues, F. A., Bomfim, I. D., Cavalcanti, B. C., Pessoa, C., Goncalves, R. S., Wardell, J. L., Wardell, S. M., & de Souza, M. V. (2014). Mefloquine–oxazolidine derivatives: A new class of anticancer agents. Chemical Biology & Drug Design, 83, 126–131.

    Article  CAS  Google Scholar 

  90. Andrade, S. F., Teixeira, C. S., Ramos, J. P., Lopes, M. S., Pádua, R. M., Oliveira, M. C., Souza-Fagundes, E. M., & Alves, R. J. (2014). Synthesis of a novel series of 2, 3, 4-trisubstituted oxazolidines designed by isosteric replacement or rigidification of the structure and cytotoxic evaluation. MedChemComm, 5, 1693–1699.

    Article  CAS  Google Scholar 

  91. Valente, S., Trisciuoglio, D., De Luca, T., Nebbioso, A., Labella, D., Lenoci, A., Bigogno, C., Dondio, G., Miceli, M., Brosch, G., & Del Bufalo, D. (2014). 1, 3, 4-Oxadiazole-containing histone deacetylase inhibitors: Anticancer activities in cancer cells. Journal of Medicinal Chemistry, 57, 6259–6265.

    Article  PubMed  CAS  Google Scholar 

  92. Bhongade, B. A., Talath, S., Gadad, R. A., & Gadad, A. K. (2016). Biological activities of imidazo [2, 1-b][1, 3, 4] thiadiazole derivatives: A review. Journal of Saudi Chemical Society, 20, S463–S475.

    Article  CAS  Google Scholar 

  93. Jain, A. K., Sharma, S., Vaidya, A., Ravichandran, V., & Agrawal, R. K. (2013). 1, 3, 4-Thiadiazole and its derivatives: A review on recent progress in biological activities. Chemical Biology & Drug Design, 81, 557–576.

    Article  CAS  Google Scholar 

  94. Siddiqui, N., Ahuja, P., Ahsan, W., Pandeya, S. N., & Alam, M. S. (2009). Thiadiazoles: Progress report on biological activities. Journal of Chemical and Pharmaceutical Research, 1, 19–30.

    CAS  Google Scholar 

  95. Hu, Y., Li, C.-Y., Wang, X.-M., Yang, Y.-H., & Zhu, H.-L. (2014). 1,3,4-Thiadiazole: Synthesis, reactions, and applications in medicinal, agricultural, and materials chemistry. Chemical Reviews, 114, 5572–5610.

    Article  PubMed  CAS  Google Scholar 

  96. Çevik, U. A., Osmaniye, D., Levent, S., Sağlik, B. N., Çavuşoğlu, B. K., Özkay, Y., & Kaplancikl, Z. A. (2020). Synthesis and characterization of a new series of thiadiazole derivatives as potential anticancer agents. Heterocyclic Communications, 26, 6–13.

    Article  Google Scholar 

  97. Mabkhot, Y. N., Barakat, A., Al-Majid, A. M., Alshahrani, S., Yousuf, S., & Choudhary, M. I. (2013). Synthesis, reactions and biological activity of some new bis-heterocyclic ring compounds containing sulphur atom. Chemistry Central Journal, 7, 1–9.

    Article  Google Scholar 

  98. Sayed, O. M., Mekky, A. E., Farag, A. M., & Elwahy, A. H. (2015). 3, 4-Dimethyl-2, 5-functionalized thieno [2, 3-b] thiophenes: Versatile precursors for novel bis-thiazoles. Journal of Sulfur Chemistry, 36, 124–134.

    Article  CAS  Google Scholar 

  99. Jarak, I., Kralj, M., Piantanida, I., Suman, L., Zinic, M., Pavelic, K., & Karminski-Zamola, G. (2006). Novel cyano- and amidino-substituted derivatives of thieno[2,3-b]- and thieno[3,2-b]thiophene-2-carboxanilides and thieno[3′,2′:4,5]thieno- and thieno[2′,3′:4,5]thieno [2,3-c]quinolones: Synthesis, photochemical synthesis, DNA binding, and antitumor evaluation. Bioorganic & Medicinal Chemistry, 14, 2859–2868.

    Article  CAS  Google Scholar 

  100. Mishra, R., Sharma, P. K., Verma, P. K., Tomer, I., Mathur, G., & Dhakad, P. K. (2017). Biological potential of thiazole derivatives of synthetic origin. Journal of Heterocyclic Chemistry, 54, 2103–2116.

    Article  CAS  Google Scholar 

  101. Kumawat, M. K. (2018). Thiazole containing heterocycles with antimalarial activity. Current Drug Discovery Technologies, 15, 196–200.

    Article  PubMed  CAS  Google Scholar 

  102. Rouf, A., & Tanyeli, C. (2015). Bioactive thiazole and benzothiazole derivatives. European Journal of Medicinal Chemistry, 97, 911–927.

    Article  PubMed  CAS  Google Scholar 

  103. Finiuk, N. S., Hreniuh, V. P., Ostapiuk, Y. V., Matiychuk, V. S., Frolov, D. A., Obushak, M. D., Stoika, R. S., & Babsky, A. M. (2017). Antineoplastic activity of novel thiazole derivatives. Biopolymers and Cell

  104. Sayed, A. R., Gomha, S. M., Abdelrazek, F. M., Farghaly, M. S., Hassan, S. A., & Metz, P. (2019). Design, efficient synthesis and molecular docking of some novel thiazolyl-pyrazole derivatives as anticancer agents. BMC Chemistry, 13, 1–3.

    Article  CAS  Google Scholar 

  105. Matada, M. N., Jathi, K., Rangappa, M. M., Geoffry, K., Kumar, S. R., Nagarajappa, R. B., & Zahara, F. N. (2020). A new sulphur containing heterocycles having azo linkage: Synthesis, structural characterization and biological evaluation. Journal of King Saud University-Science, 32, 3313–3320.

    Article  Google Scholar 

  106. Qin, J., Zhu, M., Zhu, H., Zhang, L., Fu, Y., Liu, J., Wang, Z., & OuYang, G. (2020). Synthesis and antitumor activity of novel pyridazinone derivatives containing 1, 3, 4-thiadiazole moiety. Phosphorus, Sulfur, and Silicon and the Related Elements, 195, 592–599.

    Article  CAS  Google Scholar 

  107. Yurttaş, L., Özkay, Y., Akalın-Çiftçi, G., & Ulusoylar-Yıldırım, Ş. (2014). Synthesis and anticancer activity evaluation of N-[4-(2-methylthiazol-4-yl) phenyl] acetamide derivatives containing (benz) azole moiety. Journal of Enzyme Inhibition and Medicinal Chemistry, 29, 175–184.

    Article  PubMed  Google Scholar 

  108. Liu, D. C., Gao, M. J., Huo, Q., Ma, T., Wang, Y., & Wu, C. Z. (2019). Design, synthesis, and apoptosis-promoting effect evaluation of novel pyrazole with benzo [d] thiazole derivatives containing aminoguanidine units. Journal of Enzyme Inhibition and Medicinal Chemistry, 34, 829–837.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Du, L., Yee, S. S., Ramachandran, K., & Risinger, A. L. (2020). Elucidating target specificity of the taccalonolide covalent microtubule stabilizers employing a combinatorial chemical approach. Nature Communications, 11(1), 1–3.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Head, Department of Chemistry, University of Rajasthan, Jaipur, Rajasthan, India, for providing necessary research facilities in the department.

Funding

Financial support to three authors Abhinav Raj Khandelwal (file no: 09/149(0813)/2020-EMR-I), Ravina Meena (file no: 09/149(0804)/2020-EMR-I), Narsingh Khatik (file no: 09/149 (0802)/2020-EMR-I) from CSIR, New Delhi, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Harshita Sachdeva has been involved in study conception, design, and in writing final draft of the manuscript and revising it critically for important intellectual content.

Sarita Khaturia has made substantial contributions to study conception and design, drafting the manuscript, acquisition, and interpretation of data.

Mohammad Saquib has contributed substantially to material preparation, acquisition of data, and analysis.

Narsingh Khatik has contributed to material preparation, data collection, and analysis.

Abhinav Raj Khandelwal has contributed to material preparation, data collection, and analysis.

Ravina Meena has contributed to material preparation, data collection, and analysis.

Khushboo Sharma has contributed to material preparation, data collection, and analysis.

All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Harshita Sachdeva.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sachdeva, H., Khaturia, S., Saquib, M. et al. Oxygen- and Sulphur-Containing Heterocyclic Compounds as Potential Anticancer Agents. Appl Biochem Biotechnol 194, 6438–6467 (2022). https://doi.org/10.1007/s12010-022-04099-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04099-w

Keywords

Navigation