Skip to main content
Log in

Cardioprotective Role of Swertiamarin, a Plant Glycoside Against Experimentally Induced Myocardial Infarction via Antioxidant and Anti-inflammatory Functions

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The study examined the protective effects of swertiamarin on rats with experimentally induced myocardial infarction. Three to six week-old male albino Wistar rats were used in this study and experimental myocardial infarction (MI) was induced using isoproterenol. Our results showed that swertiamarin restored the alteration in heart weight, body weight, and heart weight/tibia length ratio of MI-induced rats to basal levels significantly (p < 0.05). Swertiamarin significantly (p < 0.05) restored the levels of cardiac pathophysiological marker creatine kinase (CKMB), lactate dehydrogenase (LDH), aspartate aminotransferase (AST), alanine transaminase (ALT), and cardiac troponin I (cTn-1) to near normalcy in MI-induced rats. Levels of oxidative stress markers malondialdehyde (MDA), protein carbonyls (PC), and levels of Vitamin C and Vitamin E were significantly (p < 0.05) reverted to near basal levels in MI-induced rats by swertiamarin. Levels of the antioxidant glutathione (GSH) and antioxidant enzymes which include superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-s-transferase (GST), glutathione reductase (GR), and plasma total antioxidant capacity (TAC) were (p < 0.05) brought to near normalcy in MI-induced rats by swertiamarin. Levels of sodium (Na), potassium (k), and calcium (Ca) ATPases were significantly (p < 0.05) restored to near normalcy in MI-induced rats by swertiamarin. Status of pro-inflammatory cytokines including tumor necrosis factor (TNF-α), interleukin-6 (IL-6), and histological aberrations were also significantly (p < 0.05) restored to near normalcy in MI-induced rats by swertiamarin. Together, our results concluded that swertiamarin exerts significant cardioprotective functions in experimental MI in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

pH:

Potential of hydrogen

M:

Molar

mg:

Milligram

µg:

Microgram

kg:

Kilogram

ISO:

Isoproterenol hydrochloride

MI:

Myocardial infarction

CK-MB:

Creatine kinase

LDH:

Lactate dehydrogenase

AST:

Aspartate aminotransferase

ALT:

Alanine transaminase

cTn 1:

Cardiac troponin I

GSH:

Glutathione

SOD:

Superoxide dismutase

CAT:

Catalase

GPx:

Glutathione peroxidase

GST:

Glutathione-s-transferase

GR:

Glutathione reductase

TAC:

Plasma total antioxidant capacity plasma

Na:

Sodium (Na)

k:

Potassium

Ca:

Calcium

TNF-α:

Tumor necrosis factor

IL-6:

Interleukin-6

BSA:

Bovine serum albumin

NaCl:

Sodium chloride

ISO:

Isoproterenol hydrochloride

MDA:

Malondialdehyde

PC:

Protein carbonyls

Vit-C:

Vitamin C

Vit-E:

Vitamin E

References

  1. Kate Meier,et al. (2009). Chapter 41 - Myocardial infarction. Small Animal Critical Care Medicine, 174–176.

  2. Quan, N., Wang, L., Chen, X., et al. (2018). Sestrin2 prevents age-related intolerance to post myocardial infarction via AMPK/PGC-1α pathway. The Journal of Molecular and CellularCardiology, 115, 170–178.

    Article  CAS  Google Scholar 

  3. Spath, N. B., Mills, N. L., & Cruden, N. L. (2016). Novel cardioprotective and regenerative therapies in acute myocardial infarction: A review of recent and ongoing clinical trials. Future Cardiology, 12(6), 655–672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fordyce, C. B., Gersh, B. J., Stone, G. W., & Granger, C. B. (2015). Novel therapeutics in myocardial infarction: Targeting microvascular dysfunction and reperfusion injury. Trends Pharmacological Sciences, 36(9), 605–616.

    Article  CAS  Google Scholar 

  5. Leor, J., Tuvia, S., Guetta, V., et al. (2009). Intracoronary injection of in situ forming alginate hydrogel reverses left ventricular remodeling after myocardial infarction in Swine. Journal of the American College of Cardiology, 54, 1014–1023.

    Article  PubMed  Google Scholar 

  6. Stone, G. W., Dixon, S. R., Grines, C. L., et al. (2007). Predictors of infarct size after primary coronary angioplasty in acute myocardial infarction from pooled analysis from four contemporary trials. American Journal of Cardiology, 100(9), 1370–1375.

    Article  PubMed  Google Scholar 

  7. Satessa, G. D., Lenjisa, J. L., Gebremariam, E. T., & Woldu, M. A. (2015). Stem cell therapy for myocardial infarction: Challenges and prospects. The Journal of Stem Cell Research & Therapy 5(3), 1–5.

    Google Scholar 

  8. Ojha, S., Al Taee, H., Goyal, S., et al. (2016). Cardioprotective potentials of plant-derived small molecules against doxorubicin associated cardiotoxicity. Oxidative Medicine and Cellular Longevity, 2016, 5724973.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Otręba, M., Kośmider, L., & Rzepecka-Stojko, A. (2021). Polyphenols’ cardioprotective potential: Review of rat fibroblasts as well as rat and human cardiomyocyte cell lines research. Molecules (Basel, Switzerland), 26(4), 774.

    Article  PubMed  Google Scholar 

  10. Ray, P. D., Huang, P. W., & Tsuji, Y. (2012). Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cellular Signalling, 24, 981–990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim, H., Yun, J., & Kwon, S. M. (2016). Therapeutic strategies for oxidative stress-related cardiovascular diseases: Removal of excess reactive oxygen species in adult stem cells. Oxidative Medicine and Cellular Longevity, 2016, 2483163.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Moris, D., Spartalis, M., Spartalis, E., Karachaliou, G. S., Karaolanis, G. I., Tsourouflis, G., Tsilimigras, D. I., Tzatzaki, E., & Theocharis, S. (2017). The role of reactive oxygen species in the pathophysiology of cardiovascular diseases and the clinical significance of myocardial redox. Annals of Translational Medicine, 5(16), 326.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Swirski, F. K., & Nahrendorf, M. (2013). Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science, 339(6116), 161–166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vasu, V. T., Modi, H., Thaikoottathil, J. V., & Gupta, S. (2005). Hypolipidaemic and antioxidant effect of Enicostemma littorale Blume aqueous extract in cholesterol fed rats. Journal of Ethnopharmacology, 101(1–3), 277–282.

    Article  PubMed  Google Scholar 

  15. Jaishree, V., Badami, S., Rupesh Kumar, M., & Tamizhmani, T. (2009). Antinociceptive activity of swertiamarin isolated from Enicostemma axillare. Phytomedicine, 16(2–3), 227–232.

    Article  CAS  PubMed  Google Scholar 

  16. Muhamad Fadzil, N. S., Sekar, M., Gan, S. H., Bonam, S. R., Wu, Y. S., Vaijanathappa, J., Ravi, S., Lum, P. T., & Dhadde, S. B. (2021). Chemistry, pharmacology and therapeutic potential of swertiamarin – A promising natural lead for new drug discovery and development. Drug Design, Development and Therapy., 15, 2721–2746.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hazra, S. K., Sarkar, T., Salauddin, M., Sheikh, H. I., Pati, S., & Chakraborty, R. (2020). Characterization of phytochemicals, minerals and in vitro medicinal activities of bael (Aegle marmelos L.) pulp and differently dried edible leathers. Heliyon, 6(10), e05382. https://doi.org/10.1016/j.heliyon.2020.e05382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sarkar, T., Salauddin, M., & Chakraborty, R. (2020). In-depth pharmacological and nutritional properties of bael (Aegle marmelos): A critical review. Journal of agriculture and food research, 2, 100081. https://doi.org/10.1016/j.jafr.2020.100081

    Article  Google Scholar 

  19. Sathish, V., Ebenezar, K. K., & Devaki, T. (2003). Synergistic effect of nicorandil and amlodipine on tissue defense system during experimental myocardial infarction in rats. Molecular and Cellular Biochemistry, 243, 33–138.

    Article  Google Scholar 

  20. Schretter, C. E., Vielmetter, J., Bartos, I., Marka, Z., Marka, S., Argade, S., & Mazmanian, S. K. (2018). A gut microbial factor modulates locomotor behaviour in Drosophila. Nature, 563(7731), 402–406. https://doi.org/10.1038/s41586-018-0634-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Aydin, S., Ugur, K., Aydin, S., Sahin, İ, & Yardim, M. (2019). Biomarkers in acute myocardial infarction: Current perspectives. Vascular Health Risk Management, 15, 1–10. https://doi.org/10.2147/VHRM.S166157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hill, M. F., Palace, V. P., Kaur, K., Kumar, D., Khaper, N., & Singal, P. K. (2005). Reduction in oxidative stress and modulation of heart failure subsequent to myocardial infarction in rats. Experimental and clinical cardiology, 10(3), 146–153.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Mason, S. A., Trewin, A. J., Parker, L., & Wadley, G. D. (2020). Antioxidant supplements and endurance exercise: Current evidence and mechanistic insights. Redox biology, 35, 101471. https://doi.org/10.1016/j.redox.2020.101471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Noichri, Y., Chalghoum, A., Chkioua, L., Baudin, B., Ernez, S., Ferchichi, S., & Miled, A. (2013). Low erythrocyte catalase enzyme activity is correlated with high serum total homocysteine levels in Tunisian patients with acute myocardial infarction. Diagnostic pathology, 8, 68. https://doi.org/10.1186/1746-1596-8-68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lim, C. C., Bryan, N. S., Jain, M., Garcia-Saura, M. F., Fernandez, B. O., Sawyer, D. B., Handy, D. E., Loscalzo, J., Feelisch, M., & Liao, R. (2009). Glutathione peroxidase deficiency exacerbates ischemia-reperfusion injury in male but not female myocardium: insights into antioxidant compensatory mechanisms. American Journal of Physiology Heart and circulatory physiology, 297(6), H2144–H2153. https://doi.org/10.1152/ajpheart.00673.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pahwa, S., Sharma, R., & Singh, B. (2017). Role of glutathione S-transferase in coronary artery disease patients with and without type 2 diabetes mellitus. Journal of Clinical Diagnostic Research, 11(1), BC05–BC08. https://doi.org/10.7860/JCDR/2017/23846.9281

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zuzak, E., Horecka, A., Kiełczykowska, M., Dudek, A., Musik, I., Kurzepa, J., Kurzepa, J. (2017). Glutathione level and glutathione reductase activity in serum of coronary heart disease patients. Journal of Pre-Clinical and Clinical Research, 11(2), 103–105. https://doi.org/10.26444/jpccr/81277

  28. Zhu, F., Li, Y., Zhang, J., Piao, C., Liu, T., Li, H.-H., et al. (2013). Senescent cardiac fibroblast is critical for cardiac fibrosis after myocardial infarction. PLoS One, 8(9), 74535.

    Article  Google Scholar 

  29. Bezerra, O. C., França, C. M., Rocha, J. A., et al. (2017). Cholinergic stimulation improves oxidative stress and inflammation in experimental myocardial infarction. Scientific Reports, 7, 13687.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gökdemir, et al. (2013). The role of oxidative stress and inflammation in the early evaluation of acute non-ST-elevation myocardial infarction: An observational study. Oxidative stress and inflammation in NSTEMI, 13, 131–136.

    Google Scholar 

  31. Nian, M., Lee, P., Khaper, N., & Liu, P. (2004). Inflammatory cytokines and postmyocardial infarction remodeling. Circulation Research, 94, 1543–1553.

    Article  CAS  PubMed  Google Scholar 

  32. Pisoschi, A. M., & Pop, A. (2015). The role of antioxidants in the chemistry of oxidative stress: A review. European Journal of medicinal chemistry, 97, 55–74.

    Article  CAS  PubMed  Google Scholar 

  33. Emingway, H., Feder, G.S., Fitzpatrick, N.K., et al. (2017). Using nationwide ‘big data’ from linked electronic health records to help improve outcomes in cardiovascular diseases: 33 studies using methods from epidemiology, informatics, economics and social science in the ClinicAl disease research using LInked Bespoke studies and electronic health Records (CALIBER) programme. Southampton (UK): NIHR Journals Library; (Programme Grants for Applied Research, No. 5.4.) Chapter 11, Acute myocardial infarction: evidence of treatment benefits beyond those provided by clinical trials – Further opportunities to improve outcomes. Available from:

  34. Sen, A., Vardaxis, I., Lindqvist, B. H., et al. (2019). Systematic assessment of prescribed medications and short-term risk of myocardial infarction – A pharmacopeia-wide association study from Norway and Sweden. Scientific Reports, 9, 8257.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Chang, X., Zhang, T., Zhang, W., Zhao, Z., & Sun, J. (2020). Natural drugs as a treatment strategy for cardiovascular disease through the regulation of oxidative stress. Oxidative Medicine and Cellular Longevity, 2020(20), 5430407.

    PubMed  PubMed Central  Google Scholar 

  36. Parwani, K., Patel, F., Patel, D., & Mandal, P. (2021). Protective effects of swertiamarin against methylglyoxal-induced epithelial-mesenchymal transition by improving oxidative stress in rat kidney epithelial (NRK-52E) cells. Molecules, 26, 2748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wu, et al. (2017). Antioxidant and hepatoprotective effect of swertiamarin on carbon tetrachloride-induced hepatotoxicity via the Nrf2/HO-1 pathway. Cellular Physiology Biochemistry, 241, 2242–2254.

    Article  Google Scholar 

  38. Jaisree, & Badami, S. (2010). Anti-oxidant and hepatoprotective effect of swertiamarin from Enicostemma axillary against D-galactosamine induced acute liver damage in rats. Journal of Ethnopharmacology, 130(1), 103–6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally.

Corresponding author

Correspondence to Leilei Fan.

Ethics declarations

Ethical Approval

Not Applicable.

Consent to Participate

All authors have their consent to participate.

Consent for Publication

All authors have their consent to publish their work.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Wu, S., Ibrahim, I.A.A. et al. Cardioprotective Role of Swertiamarin, a Plant Glycoside Against Experimentally Induced Myocardial Infarction via Antioxidant and Anti-inflammatory Functions. Appl Biochem Biotechnol 195, 5394–5408 (2023). https://doi.org/10.1007/s12010-022-04094-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04094-1

Keywords

Navigation