Skip to main content
Log in

Pinocembrin Relieves Mycoplasma pneumoniae Infection‑Induced Pneumonia in Mice Through the Inhibition of Oxidative Stress and Inflammatory Response

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Pneumonia is a serious infectious disease with increased morbidity and mortality worldwide. The M. pneumoniae is a major airway pathogen that mainly affects respiratory tract and ultimately leads to the development of pneumonia. The current exploration was aimed to uncover the beneficial properties of pinocembrin against the M. pneumoniae-triggered pneumonia in mice via its anti-inflammatory property. The pneumonia was stimulated to the BALB/c mice via infecting them with M. pneumoniae (100 µl) for 2 days through nasal drops and concomitantly treated with pinocembrin (10 mg/kg) for 3 days. The azithromycin (100 mg/kg) was used as a standard drug. Then the lung weight, nitric oxide, and myeloperoxidase (MPO) activity was assessed. The content of MDA, GSH, and SOD activity was scrutinized using kits. The total cells and DNA amount present in the bronchoalveolar lavage fluid (BALF) was assessed by standard methods. The IL-1, IL-6, IL-8, TNF-α, and TGF contents in the BALF samples and NF-κB level in the lung tissues were assessed using kits. The lung histopathology was assessed microscopically to detect the histological alterations. The 10 mg/kg of pinocembrin treatment substantially decreased the lung weight, nitric oxide (NO) level, and MPO activity. The MDA level was decreased, and GSH content and SOD activity were improved by the pinocembrin treatment. The pinocembrin administered pneumonia animals also demonstrated the decreased total cells, DNA amount, IL-1, IL-6, IL-8, TNF-α, and TGF in the BALF and NF-κB level. The findings of histological studies also witnessed the beneficial role of pinocembrin against M. pneumoniae-infected pneumonia. In conclusion, our findings confirmed that the pinocembrin effectively ameliorated the M. pneumoniae-provoked inflammation and oxidative stress in the pneumonia mice model. Hence, it could be a hopeful therapeutic agent to treat the pneumonia in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Miyashita, N., Kawai, Y., Inamura, N., Tanaka, T., Akaike, H., Teranishi, H., Wakabayashi, T., Nakano, T., Ouchi, K., & Okimoto, N. (2014). Setting a standard for the initiation of steroid therapy in refractory or severe Mycoplasma pneumoniae pneumonia in adolescents and adults. Journal of Infection and Chemotherapy, 21, 153–160.

    Article  PubMed  Google Scholar 

  2. Bajantri, B., Venkatram, S., & Diaz-Fuentes, G. (2018). Mycoplasma pneumoniae: A potentially severe infection. Journal of Clinical Medicine Research, 10, 535–544.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Sondergaard, M. J., Friis, M. B., Hansen, D. S., Jørgensen, I., & M. (2018). Clinical manifestations in infants and children with Mycoplasma pneumoniae infection. PLoS ONE, 13, e0195288.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gao, J., Lin, S., Gao, Y., Zou, X., Zhu, J., Chen, M., Wan, H., & Zhu, H. (2019). Pinocembrin inhibits the proliferation and migration and promotes the apoptosis of ovarian cancer cells through down-regulating the mRNA levels of N-cadherin and GABAB receptor. Biomedicine & Pharmacotherapy, 120, 109505.

    Article  CAS  Google Scholar 

  5. Kurata, S., Osaki, T., Yonezawa, H., Arae, K., Taguchi, H., & Kamiya, S. (2014). Role of IL-17A and IL- 10 in the antigen induced inflammation model by Mycoplasma pneumoniae. BMC Microbiology, 14, 156.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wang, J., Cheng, W., Wang, Z., Xin, L., & Zhang, W. (2017). ATF3 inhibits the inflammation induced by Mycoplasma pneumonia in vitro and in vivo. Pediatric Pulmonology, 52, 1163–1170.

    Article  PubMed  Google Scholar 

  7. Shikha, T., Sudhil, K., & Surinder, K. B. (2012). Mucins and toll-like receptors: Kith and kin in infection and cancer. Cancer Letters, 321, 110–119.

    Article  Google Scholar 

  8. Hwang, M. H., Damte, D., Lee, J. S., Gebru, E., Chang, Z. Q., Cheng, H., Jung, B. Y., Rhee, M. H., & Park, S. C. (2011). Mycoplasma hyopnuemoniae induces pro-inflammatory cytokine and nitric oxide production through NF-κB and MAPK pathways in RAW264.7 cells. Veterinary Research Communications, 35, 21–34.

    Article  PubMed  Google Scholar 

  9. Lai, J. F., Zindl, C. L., Duffy, L. B., Atkinson, T. P., Jung, Y. W., Rooijen, N., Waites, K. B., Krause, D. C., & Chaplin, D. D. (2010). Critical role of macrophages and their activation via MyD88-NFκB signaling in lung innate immunity to Mycoplasma pneumoniae. PLoS ONE, 5, e14417.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Guo, L., Liu, F., Lu, M. P., Zheng, Q., & Chen, Z. M. (2015). Increased T cell activation in BALF from children with Mycoplasma pneumoniae pneumonia. Pediatric Pulmonology, 50, 814–819.

    Article  PubMed  Google Scholar 

  11. Zhang, Y., Zhou, Y., Li, S., Yang, D., Wu, X., & Chen, Z. (2016). The clinical characteristics and predictors of refractory Mycoplasma pneumoniae pneumonia in children. PLoS ONE, 11, e156465.

    Google Scholar 

  12. Meffert, M. K., Chang, J. M., Wiltgen, B. J., Fanselow, M. S., & Baltimore, D. (2003). NFkappa B functions in synaptic signaling and behavior. Nature Neuroscience, 6, 1072–1078.

    Article  PubMed  CAS  Google Scholar 

  13. Oishi, T., Narita, M., Matsui, K., Shirai, T., Matsuo, M., & Negishi, J. (2011). Clinical implications of interleukin-18 levels in pediatric patients with Mycoplasma pneumoniae pneumonia. Journal of Infection and Chemotherapy, 17, 803–806.

    Article  PubMed  CAS  Google Scholar 

  14. Chmura, K., Bai, X., Nakamura, M., Kandasamy, P., McGibney, M., & Kuronuma, K. (2008). Induction of IL-8 by Mycoplasma pneumoniae membrane in BEAS-2B cells. American Journal of Physiology. Lung Cellular and Molecular Physiology, 295, 220–230.

    Article  Google Scholar 

  15. Kratzer, E., Tian, Y., Sarich, N., Wu, T., Meliton, A., Leff, A., & Birukova, A. A. (2012). Oxidative stress contributes to lung injury and barrier dysfunction via microtubule destabilization. American Journal of Respiratory Cell and Molecular Biology, 47, 688–697.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Mahmoud Abd El Hafiz, A., Mohammed El Wakeel, L., & Mohammed El Hady, H. (2013). High dose N-acetyl cysteine improves inflammatory response and outcome in patients with COPD exacerbations. Egypt Journal of Chest Disseminated Tuberculosis, 62, 51–57.

    Article  Google Scholar 

  17. Rahman, I., & MacNee, W. (2000). Oxidative stress and regulation of glutathione in lung inflammation. European Respiratory Journal, 16, 534–554.

    Article  PubMed  CAS  Google Scholar 

  18. Esposito, S., Blasi, F., Arosio, C., Fioravanti, L., Fagetti, L., Droghetti, R., Tarsia, P., Allegra, L., & Principi, N. (2000). Importance of acute Mycoplasma pneumoniae and chlamydia pneumoniae infections in children with wheezing. European Respiratory Journal, 16, 1142–1146.

    Article  PubMed  CAS  Google Scholar 

  19. Liu, W. K., Liu, Q., Chen, D. H., Liang, H. X., Chen, X. K., Chen, M. X., Qiu, S. Y., Yang, Z. Y., & Zhou, R. (2014). Epidemiology of acute respiratory infections in children in Guangzhou: A three-year study. PLoS ONE, 9, e96674.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gullsby, K., & Bondeson, K. (2016). No detection of macrolide-resistant Mycoplasma pneumoniae from Swedish patients, 1996–2013. Infect Ecol Epidemiol, 6, 31374.

    PubMed  Google Scholar 

  21. Rasul, A., Millimouno, F. M., Ali Eltayb, W., Ali, M., Li, J., & Li, X. M. (2013). Pinocembrin: A novel natural compound with versatile pharmacological and biological activities. BioMed Research International, 2013, 379850.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hanieh, H., Islam, V. I. H., Saravanan, S., Chellappandian, M., Ragul, K., Durga, A., Venugopal, K., Senthilkumar, V., & Senthilkumar, P. (2017). Pinocembrin, a novel histidine decarboxylase inhibitor with anti-allergic potential in in vitro. European Journal of Pharmacology, 814, 178–186.

    Article  PubMed  CAS  Google Scholar 

  23. Saad, M. A., Salam, R. M. A., Kenawy, S. A., & Attia, A. S. (2015). Pinocembrin attenuates hippocampal inflammation, oxidative perturbations and apoptosis in a rat model of global cerebral ischemia reperfusion. Pharmacological Reports, 67, 115–122.

    Article  PubMed  CAS  Google Scholar 

  24. Said, M. M., Azab, S. S., Saeed, N. M., & El-Demerdash, E. (2018). Antifibrotic mechanism of pinocembrin: Impact on oxidative stress, inflammation and TGF-beta/Smad inhibition in rats. Annals of Hepatology, 17, 307–317.

    Article  PubMed  CAS  Google Scholar 

  25. Lungkaphin, A., Pongchaidecha, A., Palee, S., Arjinajarn, P., Pompimon, W., & Chattipakorn, N. (2015). Pinocembrin reduces cardiac arrhythmia and infarct size in rats subjected to acute myocardial ischemia/reperfusion. Applied Physiology, Nutrition and Metabolism, 40, 1031–1037.

    Article  CAS  Google Scholar 

  26. Wang, W., Zheng, L., Xu, L., Tu, J., & Gu, X. (2020). Pinocembrin mitigates depressive-like behaviors induced by chronic unpredictable mild stress through ameliorating neuroinflammation and apoptosis. Molecular Medicine, 26, 53.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wang, Y., Miao, Y., Mir, A. Z., Cheng, L., Wang, L., Zhao, L., Cui, Q., Zhao, W., & Wang, H. (2016). Inhibition of beta-amyloid-induced neurotoxicity by pinocembrin through Nrf2/HO-1 pathway in SH-SY5Y cells. Journal of the Neurological Sciences, 368, 223–230.

    Article  PubMed  CAS  Google Scholar 

  28. Liu, R., Li, J. Z., Song, J. K., Zhou, D., Huang, C., Bai, X. Y., & Du, G. (2014). Pinocembrin improves cognition and protects the neurovascular unit in Alzheimer related deficits. Neurobiology of Aging, 35, 1275–1285.

    Article  PubMed  Google Scholar 

  29. Arslan, S., Ozbilge, H., Kaya, E. G., & Er, O. (2011). In vitro antimicrobial activity of propolis, BioPure MTAD, sodium hypochlorite, and chlorhexidine on Enterococcus faecalis and Candida albicans. Saudi Medical Journal, 32, 479–483.

    PubMed  Google Scholar 

  30. Soromou, L. W., Chu, X., Jiang, L. X., Wei, M. M., Huo, M., Chen, N., & Deng, X. (2012). In vitro and in vivo protection provided by pinocembrin against lipopolysaccharide-induced inflammatory responses. International Immunopharmacology, 14, 66–74.

    Article  PubMed  CAS  Google Scholar 

  31. Shi, L. L., Chen, B. N., Gao, M., Zhang, H. A., Li, Y. J., Wang, L., & Du, G. (2011). The characteristics of therapeutic effect of pinocembrin in transient global brain ischemia/reperfusion rats. Life Sciences, 88, 521–528.

    Article  PubMed  CAS  Google Scholar 

  32. Sang, H., Yuan, N., Yao, S. T., Li, F. R., Wang, J. F., & Fang, Y. Q. (2012). Inhibitory effect of the combination therapy of simvastatin and pinocembrin on atherosclerosis in ApoE-deficient mice. Lipids in Health and Disease, 11, 166.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Punvittayagul, C., Pompimon, W., Wanibuchi, H., Fukushima, S., & Wongpoomchai, R. (2012). Effects of pinocembrin on the initiation and promotion stages of rat hepatocarcinogenesis. Asian Pacific Journal of Cancer Prevention, 13, 2257–2261.

    Article  PubMed  Google Scholar 

  34. Gao, L. W., Yin, J., Hu, Y. H., Liu, X. Y., Feng, X. L., He, J. X., & Shen, K. L. (2019). The epidemiology of paediatric Mycoplasma pneumoniae pneumonia in North China: 2006 to 2016. Epidemiology and Infection, 147, e192.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kumar, N., Biswas, S., Hosur Shrungeswara, A., Basu Mallik, S., Hipolith Viji, M., & Elizabeth Mathew, J. (2017). Pinocembrin enriched fraction of Elytranthe parasitica (L.) Danser induces apoptosis in HCT 116 colorectal cancer cells. Journal of Infection and Chemotherapy, 23, 354–359.

    Article  PubMed  CAS  Google Scholar 

  36. Williamson, J., Marmion, B. P., Worswick, D. A., Kok, T.W., Tannock, G., Herd, R., & Harris, R.J., (1992). Laboratory diagnosis of Mycoplasma pneumoniae infection. 4. Antigen capture and PCR-gene amplification for detection of the mycoplasma: Problems of clinical correlation. Epidemiology and Infection109(3), 519–537.

  37. Ngeow, Y. F., Suwanjutha, S., Chantarojanasriri, T., Wang, F., Saniel, M., Alejandria, M., & Cheong, Y. M. (2005). An Asian study on the prevalence of atypical respiratory pathogens in community-acquired pneumonia. International Journal of Infectious Diseases, 9, 144–153.

    Article  PubMed  Google Scholar 

  38. Meyer Sauteur, P. M., Jacobs, B. C., Spuesens, E. B., Jacobs, E., Nadal, D., & Vink, C. (2014). Antibody responses to Mycoplasma pneumoniae: Role in pathogenesis and diagnosis of encephalitis? PLoS Pathogens, 10, e1003983.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Shimizu, T. (2016). Inflammation-inducing factors of Mycoplasma pneumoniae. Frontiers in Microbiology, 7, 414.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wood, P. R., Kampschmidt, J. C., Dube, P. H., Cagle, M. P., Chaparro, P., Ketchum, N. S., & Brooks, E. G. (2017). Mycoplasma pneumoniae and health outcomes in children with asthma. Annals of Allergy, Asthma & Immunology, 119, 146–152.

    Article  Google Scholar 

  41. Somarajan, S. R., Kannan, T. R., & Baseman, J. B. (2010). Mycoplasma pneumoniae Mpn133 is a cytotoxic nuclease with a glutamic acid-, lysine and serine-rich region essential for binding and internalization but not enzymatic activity. Cellular Microbiology, 12, 1821–1831.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Anjum, M. U., Riaz, H., & Tayyab, H. M. (2017). Acute respiratory tract infections (ARIS); clinico-epidemiolocal profile in children of less than five years of age. Professional Med J, 24, 322–325.

    Article  Google Scholar 

  43. Akkaya, A., & Ozturk, O. (2008). Total antioxidant capacity and C-reactive protein levels in patients with community-acquired pneumonia. Turk JMedicalences, 38, 537–544.

    Google Scholar 

  44. Trefler, S., Rodriguez, A., Martin-Loeches, I., Sanches, V., Marin, J., Llaurado, M., Romeu, M., Diaz, E., Nogues, R., & Giralt, M. (2014). Oxidative stress in immunocompetent patients with severe community-acquired pneumonia. A pilot study. Medicina Intensiva, 38, 73–82.

    Article  PubMed  CAS  Google Scholar 

  45. Biswas, S. K., & Rahman, I. (2009). Environmental toxicity, redox signaling and lung inflammation: The role of glutathione. Molecular Aspects of Medicine, 30, 60–76.

    Article  PubMed  CAS  Google Scholar 

  46. Cemek, M., Caksen, H., Bayiroglu, F., Cemek, F., & Dede, S. (2006). Oxidative stress and enzymic-non-enzymic antioxidant responses in children with acute pneumonia. Cell Biochemistry and Function, 24, 269–273.

    Article  PubMed  CAS  Google Scholar 

  47. Pang, H. X., Qiao, H. M., Cheng, H. J., Zhang, Y. F., Liu, X. J., & Li, J. Z. (2011). Levels of TNF-alpha, IL-6 and IL-10 in bronchoalveolar lavage fluid in children with Mycoplasma pneumoniae pneumonia. Zhongguo Dang Dai ErKe Za Zhi, 13, 808–810.

    CAS  Google Scholar 

  48. Yang, J., Hooper, W. C., Phillips, D. J., & Talkington, D. F. (2002). Regulation of proinflammatory cytokines in human lung epithelial cells infected with Mycoplasma pneumoniae. Infection and Immunity, 70, 3649–3655.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Lee, K. E., Kim, K. W., Hong, J. Y., Kim, K. E., & Sohn, M. H. (2013). Modulation of IL-8 boosted by Mycoplasma pneumoniae lysate in human airway epithelial cells. Journal of Clinical Immunology, 33, 1117–1125.

    Article  PubMed  CAS  Google Scholar 

  50. He, J. E., Gao, C. Y., & Li, H. R. (2013). Effect of low-dose methylprednisolone on serum TNF-α level in children with Mycoplasma pneumoniae pneumonia. Zhongguo Dang Dai Er Ke Za Zhi, 15(850–853), 2013.

    Google Scholar 

  51. Hardy, R. D., Jafri, H. S., Olsen, K., Wordemann, M., Hatfield, J., Rogers, B. B., & Ramilo, O. (2001). Elevated cytokine and chemokine levels and prolonged pulmonary airflow resistance in a murine Mycoplasma pneumoniae pneumonia model: A microbiologic, histologic, immunologic, and respiratory plethysmographic profile. Infection and Immunity, 69, 3869–3876.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Kurai, D., Nakagaki, K., Wada, H., Saraya, T., Kamiya, S., Fujioka, Y., & Goto, H. (2013). Mycoplasma pneumoniae extract induces an IL-17-associated inflammatory reaction in murine lung: Implication for mycoplasmal pneumonia. Inflammation, 36, 285–293.

    Article  PubMed  Google Scholar 

  53. Xu, X. F., Li, X. J., Liu, J. L., Wu, L., & Chen, Z. M. (2016). Serum cytokine profile contributes to discriminating M. pneumoniae pneumonia in children. Cytokine, 86, 73–78.

    Article  PubMed  CAS  Google Scholar 

  54. Tian, F., Han, B., & Duan, M. (2014). Serum tumor necrosis factor-alpha, interleukin-6 and galctin-3 concentrations in children with Mycoplasma pneumoniae pneumonia. Zhongguo Dang Dai Er Ke Za Zhi, 16, 1001–1004.

    PubMed  CAS  Google Scholar 

  55. Andrijevic, I., Matijasevic, J., Andrijevic, L., Kovacevic, T., & Zaric, B. (2014). Interleukin-6 and procalcitonin as biomarkers in mortality prediction of hospitalized patients with community acquired pneumonia. Ann Thorac Med, 9, 162–167.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Yang Jun Hooper, W. C., Phillips, D. J., & Talkington, D. F. (2003). Interleukin-1beta responses to Mycoplasma pneumoniae infection are cell-type specific. Microbial Pathogenesis, 34, 17–25.

    Article  PubMed  Google Scholar 

  57. Gui, M., Wang, J., Zeng, N., Yang, Q., & Li, Z. (2020). Changes and clinical significance of interleukin in serum and bronchoalveolar lavage fluid of children with different pneumonia. Journal of Pediatric Pharmacy, 26, 1–4.

    CAS  Google Scholar 

  58. Zhang, Q., Lenardo, M. J., & Baltimore, D. (2017). 30 years of NF-κB: A blossoming of relevance to human pathobiology. Cell, 168(1–2), 37–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Shimizu, T., Kida, Y., & Kuwano, K. (2008). Mycoplasma pneumoniae-derived lipopeptides induce acute inflammatory responses in the lungs of mice. Infection and Immunity, 76(1), 270–277.

    Article  PubMed  CAS  Google Scholar 

  60. Salvatore, C. M., Fonseca-Aten, M., Katz-Gaynor, K., Gomez, A. M., Mejias, A., Somers, C., & Hardy, R. D. (2007). Respiratory tract infection with Mycoplasma pneumoniae in interleukin-12 knockout mice results in improved bacterial clearance and reduced pulmonary inflammation. Infection and immunity, 75(1), 236–242.

    Article  PubMed  CAS  Google Scholar 

  61. Camp, J. V., & Jonsson, C. B. (2017). A role for neutrophils in viral respiratory disease. Frontiers in Immunology, 8, 550.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Yan, Y., Wei, Y., Jiang, W., & Hao, C. (2016). The clinical characteristics of corticosteroid-resistant refractory Mycoplasma pneumoniae pneumonia in children. Science and Reports, 6, 39929.

    Article  CAS  Google Scholar 

  63. Chen, Z., Shao, X., Dou, X., Zhang, X., Wang, Y., Zhu, C., Hao, C., Fan, M., Ji, W., & Yan, Y. (2016). Role of the Mycoplasma pneumoniae/interleukin-8/neutrophil axis in the pathogenesis of pneumonia. PLoS ONE, 11, e146377.

    Google Scholar 

  64. Santos, S. S., Brunialti, M. K. C., Rigato, O., Machado, F. R., Silva, E., & Salomao, R. (2012). Generation of nitric oxide and reactive oxygen species by neutrophils and monocytes from septic patients and association with outcomes. Shock, 38(1), 18–23.

    Article  PubMed  CAS  Google Scholar 

  65. Senoner, T., & Dichtl, W. (2019). Oxidative stress in cardiovascular diseases: Still a therapeutic target? Nutrients, 11(9), 2090.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally.

Corresponding author

Correspondence to Mei Xue.

Ethics declarations

Ethics Approval

All work has been done under the guidelines of the Institutional Ethics Committee.

Consent to Participate

All authors have their consent to participate.

Consent for Publication

All authors have their consent to publish their work.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, J., Xue, M. Pinocembrin Relieves Mycoplasma pneumoniae Infection‑Induced Pneumonia in Mice Through the Inhibition of Oxidative Stress and Inflammatory Response. Appl Biochem Biotechnol 194, 6335–6348 (2022). https://doi.org/10.1007/s12010-022-04081-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04081-6

Keywords

Navigation