Skip to main content

Advertisement

Log in

Synthesis and Characterization of Plumbagin S-Allyl Cysteine Ester: Determination of Anticancer Activity In Silico and In Vitro

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In recent years, derivatives of natural compounds are synthesized to increase the bioavailability, pharmacology, and pharmacokinetics properties. The naphthoquinone, plumbagin (PLU), is well known for its anticancer activity. However, the clinical use of PLU is hindered due to its toxicity. Previous reports have shown that modification of PLU at 5ʹ-hydroxyl group has reduced its toxicity towards normal cell line. In accordance, in the present study, 5ʹ-hydroxyl group of PLU was esterified with S-allyl cysteine (SAC) to obtain PLU-SAC ester. The drug-likeness of PLU-SAC was understood by in silico ADME analysis. PLU-SAC was characterized by UV–visible spectroscopy, mass spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy. Molecular docking and dynamics simulation analysis revealed the interaction of PLU-SAC with proteins of interest in cancer therapy such as human estrogen receptor α, tumor protein p53 negative regulator mouse double minute 2, and cyclin-dependent kinase 2. MMGBSA calculation showed the favorable binding energy which in turn demonstrated the stable binding of PLU-SAC with these proteins. PLU-SAC showed apoptosis in breast cancer cell line (MCF-7) by inducing oxidative stress, disturbing mitochondrial function, arresting cells at G1 phase of cell cycle, and initiating DNA fragmentation. However, PLU-SAC did not show toxicity towards normal Vero cell line. PLU-SAC was synthesized and structurally characterized, and its anticancer activity was determined by in silico and in vitro analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data will be available on request.

References

  1. Wang, T., Wu, F., Jin, Z., Zhai, Z., Wang, Y., Tu, B., Yan, W., & Tang, T. (2014). Plumbagin inhibits LPS-induced inflammation through the inactivation of the nuclear factor-kappa B and mitogen activated protein kinase signaling pathways in RAW 264.7 cells. Food and Chemical Toxicology, 64, 177–183.

    Article  PubMed  CAS  Google Scholar 

  2. Nair, S. V., Baranwal, G., Chatterjee, M., Sachu, A., Vasudevan, A. K., Bose, C., Banerji, A., & Biswas, R. (2016). Antimicrobial activity of plumbagin, a naturally occurring naphthoquinone from Plumbago rosea, against Staphylococcus aureus and Candida albicans. International Journal of Medical Microbiology, 306(4), 237–248.

    Article  PubMed  CAS  Google Scholar 

  3. Chu, H., Yu, H., Ren, D., Zhu, K., & Huang, H. (2016). Plumbagin exerts protective effects in nucleus pulposus cells by attenuating hydrogen peroxide-induced oxidative stress, inflammation and apoptosis through NF-κB and Nrf-2. International Journal of Molecular Medicine, 37(6), 1669–1676.

    Article  PubMed  CAS  Google Scholar 

  4. Pai, S. A., Munshi, R. P., Panchal, F. H., Gaur, I.-S., Mestry, S. N., Gursahani, M. S., & Juvekar, A. R. (2019). Plumbagin reduces obesity and nonalcoholic fatty liver disease induced by fructose in rats through regulation of lipid metabolism, inflammation and oxidative stress. Biomedicine & Pharmacotherapy, 111, 686–694.

    Article  CAS  Google Scholar 

  5. Yin, Z., Zhang, J., Chen, L., Guo, Q., Yang, B., Zhang, W., & Kang, W. (2020). Anticancer effects and mechanisms of action of plumbagin: Review of research advances. BioMed Research International, 2020, 1–10.

    Google Scholar 

  6. Jangra, A., Chadha, V., Kumar, D., Kumar, V., & Arora, M. K. (2021). Neuroprotective and acetylcholinesterase inhibitory activity of plumbagin in ICV-LPS induced behavioral deficits in rats. Current Research in Behavioral Sciences, 2, 100060.

    Article  Google Scholar 

  7. Jiang, Z.-B., Xu, C., Wang, W., Zhang, Y.-Z., Huang, J.-M., Xie, Y.-J., Wang, Q.-Q., Fan, X.-X., Yao, X.-J., & Xie, C. (2021). Plumbagin suppresses non-small cell lung cancer progression through downregulating ARF1 and by elevating CD8+ T cells. Pharmacological Research, 169, 105656.

    Article  PubMed  CAS  Google Scholar 

  8. Cao, Y.-Y., Yu, J., Liu, T.-T., Yang, K.-X., Yang, L.-Y., Chen, Q., Shi, F., Hao, J.-J., Cai, Y., & Wang, M.-R. (2018). Plumbagin inhibits the proliferation and survival of esophageal cancer cells by blocking STAT3-PLK1-AKT signaling. Cell Death & Disease, 9(2), 1–13.

    Article  Google Scholar 

  9. Pan, Q., Zhou, R., Su, M., & Li, R. (2019). The effects of plumbagin on pancreatic cancer: A mechanistic network pharmacology approach. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 25, 4648.

    Article  PubMed  CAS  Google Scholar 

  10. Sinha, S., Pal, K., Elkhanany, A., Dutta, S., Cao, Y., Mondal, G., Iyer, S., Somasundaram, V., Couch, F. J., & Shridhar, V. (2013). Plumbagin inhibits tumorigenesis and angiogenesis of ovarian cancer cells in vivo. International Journal of Cancer, 132(5), 1201–1212.

    Article  PubMed  CAS  Google Scholar 

  11. Zhang, R., Wang, Z., You, W., Zhou, F., Guo, Z., Qian, K., Xiao, Y., & Wang, X. (2020). Suppressive effects of plumbagin on the growth of human bladder cancer cells via PI3K/AKT/mTOR signaling pathways and EMT. Cancer Cell International, 20(1), 1–17.

    Article  Google Scholar 

  12. Giacomini, I., Cocetta, V., Carrara, M., Ragazzi, E., & Montopoli, M. (2020). Plumbagin induces cell cycle arrest and apoptosis in A431 cisplatin-resistant cancer cells. Natural Product Communications, 15(4), 1934578X20921627.

    Article  CAS  Google Scholar 

  13. Zhong, J., Li, J., Wei, J., Huang, D., Huo, L., Zhao, C., Lin, Y., Chen, W., & Wei, Y. (2019). Plumbagin restrains hepatocellular carcinoma angiogenesis by stromal cell-derived factor (SDF-1)/CXCR4-CXCR7 axis. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 25, 6110.

    Article  PubMed  CAS  Google Scholar 

  14. De, U., Son, J. Y., Jeon, Y., Ha, S.-Y., Park, Y. J., Yoon, S., Ha, K.-T., Choi, W. S., Lee, B. M., & Kim, I. S. (2019). Plumbagin from a tropical pitcher plant (Nepenthes alata Blanco) induces apoptotic cell death via a p53-dependent pathway in MCF-7 human breast cancer cells. Food and Chemical Toxicology, 123, 492–500.

    Article  PubMed  CAS  Google Scholar 

  15. Srinivas, P., Gopinath, G., Banerji, A., Dinakar, A., & Srinivas, G. (2004). Plumbagin induces reactive oxygen species, which mediate apoptosis in human cervical cancer cells. Molecular Carcinogenesis: Published in Cooperation with the University of Texas MD Anderson Cancer Center, 40(4), 201–211.

    Article  CAS  Google Scholar 

  16. Lee, J.-H., Yeon, J.-H., Kim, H., Roh, W., Chae, J., Park, H.-O., & Kim, D.-M. (2012). The natural anticancer agent plumbagin induces potent cytotoxicity in MCF-7 human breast cancer cells by inhibiting a PI-5 kinase for ROS generation. PLoS ONE, 7(9), e45023.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Jackson, H. L., Cardounel, A. J., Zweier, J. L., & Lockwood, S. F. (2004). Synthesis, characterization, and direct aqueous superoxide anion scavenging of a highly water-dispersible astaxanthin-amino acid conjugate. Bioorganic & Medicinal Chemistry Letters, 14(15), 3985–3991.

    Article  CAS  Google Scholar 

  18. Mukherjee, A., Mishra, S., Kotla, N. K., Manna, K., Roy, S., Kundu, B., Bhattacharya, D., Das Saha, K., & Talukdar, A. (2019). Semisynthetic quercetin derivatives with potent antitumor activity in colon carcinom. Acs Omega, 4(4), 7285–7298.

    Article  CAS  Google Scholar 

  19. Newman, D. J., & Cragg, G. M. (2020). Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. Journal of Natural Products, 83(3), 770–803.

    Article  PubMed  CAS  Google Scholar 

  20. Xu, G., Shi, H., Ren, L., Gou, H., Gong, D., Gao, X., & Huang, N. (2015). Enhancing the anti-colon cancer activity of quercetin by self-assembled micelles. International Journal of Nanomedicine, 10, 2051.

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Ma, Y.-T., Yang, Y., Cai, P., Sun, D.-Y., Sánchez-Murcia, P. A., Zhang, X.-Y., Jia, W.-Q., Lei, L., Guo, M., & Gago, F. (2018). A series of enthalpically optimized docetaxel analogues exhibiting enhanced antitumor activity and water solubility. Journal of Natural Products, 81(3), 524–533.

    Article  PubMed  CAS  Google Scholar 

  22. Cui, Q., Lu, S., Ni, B., Zeng, X., Tan, Y., Chen, Y. D., & Zhao, H. (2020). Improved prediction of aqueous solubility of novel compounds by going deeper with deep learning. Frontiers in Oncology, 10, 121.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Shimada, H., Yamaoka, Y., Morita, R., Mizuno, T., Gotoh, K., Higuchi, T., Shiraishi, T., & Imamura, Y. (2012). Possible mechanism of superoxide formation through redox cycling of plumbagin in pig heart. Toxicology in Vitro, 26, 252–257.

    Article  PubMed  CAS  Google Scholar 

  24. Sagar, S., Esau, L., Moosa, B., Khashab, N. M., Bajic, V. B., & Kaur, M. (2014). Cytotoxicity and apoptosis induced by a plumbagin derivative in estrogen positive MCF-7 breast cancer cells. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 14(1), 170–180.

    CAS  Google Scholar 

  25. Sakao, K., Fujii, M., & Hou, D. X. (2009). Acetyl derivate of quercetin increases the sensitivity of human leukemia cells toward apoptosis. BioFactors, 35(4), 399–405.

    Article  PubMed  CAS  Google Scholar 

  26. Sreelatha, T., Hymavathi, A., Babu, K. S., Murthy, J. M., Pathipati, U. R., & Rao, J. M. (2009). Synthesis and insect antifeedant activity of plumbagin derivatives with the amino acid moiety. Journal of Agricultural and Food Chemistry, 57(14), 6090–6094.

    Article  PubMed  CAS  Google Scholar 

  27. Hazra, B., Sarkar, R., Bhattacharyya, S., Ghosh, P. K., Chel, G., & Dinda, B. (2002). Synthesis of plumbagin derivatives and their inhibitory activities against Ehrlich ascites carcinoma in vivo and Leishmania donovani promastigotes in vitro. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 16(2), 133–137.

    Article  CAS  Google Scholar 

  28. Gammon, D. W., Steenkamp, D. J., Mavumengwana, V., Marakalala, M. J., Mudzunga, T. T., Hunter, R., & Munyololo, M. (2010). Conjugates of plumbagin and phenyl-2-amino-1-thioglucoside inhibit MshB, a deacetylase involved in the biosynthesis of mycothiol. Bioorganic & Medicinal Chemistry, 18(7), 2501–2514.

    Article  CAS  Google Scholar 

  29. Dandawate, P., Khan, E., Padhye, S., Gaba, H., Sinha, S., Deshpande, J., Swamy, K. V., Khetmalas, M., Ahmad, A., & Sarkar, F. H. (2012). Synthesis, characterization, molecular docking and cytotoxic activity of novel plumbagin hydrazones against breast cancer cells. Bioorganic & Medicinal Chemistry Letters, 22(9), 3104–3108.

    Article  CAS  Google Scholar 

  30. Dandawate, P., Vemuri, K., Swamy, K. V., Khan, E. M., Sritharan, M., & Padhye, S. (2014). Synthesis, characterization, molecular docking and anti-tubercular activity of Plumbagin-Isoniazid Analog and its β-cyclodextrin conjugate. Bioorganic & Medicinal Chemistry Letters, 24(21), 5070–5075.

    Article  CAS  Google Scholar 

  31. Kodera, Y., Suzuki, A., Imada, O., Kasuga, S., Sumioka, I., Kanezawa, A., Taru, N., Fujikawa, M., Nagae, S., & Masamoto, K. (2002). Physical, chemical, and biological properties of S-allylcysteine, an amino acid derived from garlic. Journal of Agricultural and Food Chemistry, 50(3), 622–632.

    Article  PubMed  CAS  Google Scholar 

  32. Chuah, S. C., Moore, P. K., & Zhu, Y. Z. (2007). S-allylcysteine mediates cardioprotection in an acute myocardial infarction rat model via a hydrogen sulfide-mediated pathway. American Journal of Physiology-Heart and Circulatory Physiology, 293(5), H2693–H2701.

    Article  PubMed  CAS  Google Scholar 

  33. Johnson, P., Loganathan, C., Iruthayaraj, A., Poomani, K., & Thayumanavan, P. (2018). S-allyl cysteine as potent anti-gout drug: Insight into the xanthine oxidase inhibition and anti-inflammatory activity. Biochimie, 154, 1–9.

    Article  PubMed  CAS  Google Scholar 

  34. Chen, P., Hu, M., Liu, F., Yu, H., & Chen, C. (2019). S-allyl-l-cysteine (SAC) protects hepatocytes from alcohol-induced apoptosis. FEBS Open Bio, 9(7), 1327–1336.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Ruiz-Sánchez, E., Pedraza-Chaverri, J., Medina-Campos, O. N., Maldonado, P. D., & Rojas, P. (2020). S-allyl cysteine, a garlic compound, produces an antidepressant-like effect and exhibits antioxidant properties in mice. Brain Sciences, 10(9), 592.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Agbana, Y. L., Ni, Y., Zhou, M., Zhang, Q., Kassegne, K., Karou, S. D., Kuang, Y., & Zhu, Y. (2020). Garlic-derived bioactive compound S-allylcysteine inhibits cancer progression through diverse molecular mechanisms. Nutrition Research, 73, 1–14.

    Article  PubMed  CAS  Google Scholar 

  37. Meunier, B. (2008). Hybrid molecules with a dual mode of action: Dream or reality? Accounts of Chemical Research, 41(1), 69–77.

    Article  PubMed  CAS  Google Scholar 

  38. Gupta, A., Saha, P., Descôteaux, C., Leblanc, V., Asselin, É., & Bérubé, G. (2010). Design, synthesis and biological evaluation of estradiol–chlorambucil hybrids as anticancer agents. Bioorganic & Medicinal Chemistry Letters, 20(5), 1614–1618.

    Article  CAS  Google Scholar 

  39. Wilson Castrillón, A.H.-R., Prieto, L. J., Conesa-Milián, L., Carda, M., Naranjo, T., Maldonado, M. E., & Cardona-G, W. (2019). Synthesis and in-vitro evaluation of s-allyl cysteine ester-caffeic acid amide hybrids as potential anticancer agents. Iranian Journal of Pharmaceutical Research: IJPR, 18(4), 1770.

    PubMed  PubMed Central  Google Scholar 

  40. Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Shiau, A. K., Barstad, D., Loria, P. M., Cheng, L., Kushner, P. J., Agard, D. A., & Greene, G. L. (1998). The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell, 95(7), 927–937.

    Article  PubMed  CAS  Google Scholar 

  42. Byth, K. F., Cooper, N., Culshaw, J. D., Heaton, D. W., Oakes, S. E., Minshull, C. A., Norman, R. A., Pauptit, R. A., Tucker, J. A., & Breed, J. (2004). Imidazo [1, 2-b] pyridazines: A potent and selective class of cyclin-dependent kinase inhibitors. Bioorganic & Medicinal Chemistry Letters, 14(9), 2249–2252.

    Article  CAS  Google Scholar 

  43. Allen, J. G., Bourbeau, M. P., Wohlhieter, G. E., Bartberger, M. D., Michelsen, K., Hungate, R., Gadwood, R. C., Gaston, R. D., Evans, B., & Mann, L. W. (2009). Discovery and optimization of chromenotriazolopyrimidines as potent inhibitors of the mouse double minute 2− tumor protein 53 protein− protein interaction. Journal of Medicinal Chemistry, 52(22), 7044–7053.

    Article  PubMed  CAS  Google Scholar 

  44. Bowers, K.J., Chow, D.E., Xu, H., Dror, R.O., Eastwood, M.P., Gregersen, B.A., Klepeis, J.L., Kolossvary, I., Moraes, M.A., Sacerdoti, F.D. (2006). Scalable algorithms for molecular dynamics simulations on commodity clusters, SC'06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, IEEE, pp. 43–43.

  45. Ellman, G. L. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82(1), 70–77.

    Article  PubMed  CAS  Google Scholar 

  46. Rotruck, J. T., Pope, A. L., Ganther, H. E., Swanson, A. B., Hafeman, D. G., & Hoekstra, W. G. (1973). Selenium: Biochemical role as a component of glutathione peroxidase. Science, 179(4073), 588–590.

    Article  PubMed  CAS  Google Scholar 

  47. Kakkar, P., Das, B., Viswanathan, P. (1984). A modified spectrophotometric assay of superoxide dismutase. Indian Journal of Biochemistry and Biophysics, 21(2), 130–132.

  48. Hadwan, M. H. (2016). New method for assessment of serum catalase activity. Indian Journal of Science and Technology, 9(4), 1–5.

    Article  CAS  Google Scholar 

  49. Onitilo, A. A., Engel, J. M., Greenlee, R. T., & Mukesh, B. N. (2009). Breast cancer subtypes based on ER/PR and Her2 expression: Comparison of clinicopathologic features and survival. Clinical Medicine & Research, 7(1–2), 4–13.

    Article  CAS  Google Scholar 

  50. Ali, S., & Coombes, R. C. (2000). Estrogen receptor alpha in human breast cancer: Occurrence and significance. Journal of Mammary Gland Biology and Neoplasia, 5(3), 271–281.

    Article  PubMed  CAS  Google Scholar 

  51. Agrawal, A., Yang, J., Murphy, R. F., & Agrawal, D. K. (2006). Regulation of the p14ARF-Mdm2-p53 pathway: An overview in breast cancer. Experimental and Molecular Pathology, 81(2), 115–122.

    Article  PubMed  CAS  Google Scholar 

  52. Carr, M. I., & Jones, S. N. (2016). Regulation of the Mdm2-p53 signaling axis in the DNA damage response and tumorigenesis. Translational Cancer Research, 5(6), 707.

    Article  PubMed  CAS  Google Scholar 

  53. Brekman, A., Singh, K. E., Polotskaia, A., Kundu, N., & Bargonetti, J. (2011). A p53-independent role of Mdm2 in estrogen-mediated activation of breast cancer cell proliferation. Breast Cancer Research, 13(1), 1–14.

    Article  Google Scholar 

  54. Burgess, A., Chia, K. M., Haupt, S., Thomas, D., Haupt, Y., & Lim, E. (2016). Clinical overview of MDM2/X-targeted therapies. Frontiers in Oncology, 6, 7.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Harbour, J. W., Luo, R. X., Dei Santi, A., Postigo, A. A., & Dean, D. C. (1999). Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell, 98(6), 859–869.

    Article  PubMed  CAS  Google Scholar 

  56. Whittaker, S. R., Mallinger, A., Workman, P., & Clarke, P. A. (2017). Inhibitors of cyclin-dependent kinases as cancer therapeutics. Pharmacology & Therapeutics, 173, 83–105.

    Article  CAS  Google Scholar 

  57. Vijayan, S., Loganathan, C., Sakayanathan, P., Thayumanavan, P. (2021). In silico and in vitro investigation of anticancer effect of newly synthesized nonivamide-s-allyl cysteine ester. Journal of Biomolecular Structure and Dynamics, 1–15.

  58. Bothiraja, C., Joshi, P. P., Dama, G. Y., & Pawar, A. P. (2011). Rapid method for isolation of plumbagin, an alternative medicine from roots of Plumbago zeylanica. European Journal of Integrative Medicine, 3, 39–42.

    Article  Google Scholar 

  59. Bronowicka-Adamska, P., Bentke, A., Lasota, M., & Wróbel, M. (2020). Effect of S-Allyl–L-cysteine on MCF-7 cell line 3-mercaptopyruvate sulfurtransferase/sulfane sulfur system, viability and apoptosis. International Journal of Molecular Sciences, 21(3), 1090.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Sumiyoshi, H., & Wargovich, M. J. (1990). Chemoprevention of 1, 2-dimethylhydrazine-induced colon cancer in mice by naturally occurring organosulfur compounds. Cancer Research, 50(16), 5084–5087.

    PubMed  CAS  Google Scholar 

  61. Sigounas, G., Hooker, J., Anagnostou, A., & Steiner, M. (1997). S-allylmercaptocysteine inhibits cell proliferation and reduces the viability of erythroleukemia, breast, and prostate cancer cell lines. Nutrition and Cancer, 27(2), 186–191.

    Article  PubMed  CAS  Google Scholar 

  62. Cave, D., Ilisso, C. P., Mosca, L., Pagano, M., Martino, E., Porcelli, M., & Cacciapuoti, G. (2017). The anticancer effects of S-adenosylmethionine on breast cancer cells. JSM Chem, 5, 1049.

    Google Scholar 

  63. Othman, S., & Kozurkova, M. (2018). Sulfur containing acridine derivatives in preclinical studies with cancer cell lines. Current Medicinal Chemistry, 25(17), 1968–1975.

    Article  PubMed  CAS  Google Scholar 

  64. De Greef, D., Barton, E.M., Sandberg, E.N., Croley, C.R., Pumarol, J., Wong, T.L., Das, N., Bishayee, A. (2020). Anticancer potential of garlic and its bioactive constituents: A systematic and comprehensive review. Seminars in Cancer Biology, Elsevier.

  65. Galadari, S., Rahman, A., Pallichankandy, S., & Thayyullathil, F. (2017). Reactive oxygen species and cancer paradox: To promote or to suppress? Free Radical Biology and Medicine, 104, 144–164.

    Article  PubMed  CAS  Google Scholar 

  66. Powolny, A. A., & Singh, S. V. (2008). Plumbagin-induced apoptosis in human prostate cancer cells is associated with modulation of cellular redox status and generation of reactive oxygen species. Pharmaceutical Research, 25(9), 2171–2180.

    Article  PubMed  CAS  Google Scholar 

  67. Yang, L., Zheng, X. L., Sun, H., Zhong, Y. J., Wang, Q., He, H. N., Shi, X. W., Zhou, B., Li, J. K., & Lin, Y. (2011). Catalase suppression-mediated H2O2 accumulation in cancer cells by wogonin effectively blocks tumor necrosis factor-induced NF-κB activation and sensitizes apoptosis. Cancer Science, 102(4), 870–876.

    Article  PubMed  CAS  Google Scholar 

  68. Harris, I. S., Treloar, A. E., Inoue, S., Sasaki, M., Gorrini, C., Lee, K. C., Yung, K. Y., Brenner, D., Knobbe-Thomsen, C. B., & Cox, M. A. (2015). Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell, 27(2), 211–222.

    Article  PubMed  CAS  Google Scholar 

  69. Kim, J.-Y., Choi, J.-Y., Lee, H.-J., Byun, C. J., Park, J.-H., Park, J. H., Cho, H.-S., Cho, S.-J., Jo, S. A., & Jo, I. (2015). The green tea component (-)-epigallocatechin-3-gallate sensitizes primary endothelial cells to arsenite-induced apoptosis by decreasing c-jun n-terminal kinase-mediated catalase activity. PLoS ONE, 10(9), e0138590.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Carlisi, D., Buttitta, G., Di Fiore, R., Scerri, C., Drago-Ferrante, R., Vento, R., & Tesoriere, G. (2016). Parthenolide and DMAPT exert cytotoxic effects on breast cancer stem-like cells by inducing oxidative stress, mitochondrial dysfunction and necrosis. Cell Death & Disease, 7(4), e2194–e2194.

    Article  CAS  Google Scholar 

  71. Sznarkowska, A., Kostecka, A., Meller, K., & Bielawski, K. P. (2017). Inhibition of cancer antioxidant defense by natural compounds. Oncotarget, 8(9), 15996.

    Article  PubMed  Google Scholar 

  72. Clarke, R., Leonessa, F., Welch, J. N., & Skaar, T. C. (2001). Cellular and molecular pharmacology of antiestrogen action and resistance. Pharmacological Reviews, 53(1), 25–72.

    PubMed  CAS  Google Scholar 

  73. Prall, O. W., Rogan, E. M., & Sutherland, R. L. (1998). Estrogen regulation of cell cycle progression in breast cancer cells. The Journal of Steroid Biochemistry and Molecular Biology, 65(1–6), 169–174.

    Article  PubMed  CAS  Google Scholar 

  74. Makowska, K., Estañ, M., Ganan-Gomez, I., Boyano-Adánez, M., García-Pérez, A., & Sancho, P. (2014). Changes in mitochondrial function induced by dequalinium precede oxidative stress and apoptosis in the human prostate-cancer cell line PC-3. Molecular Biology, 48(3), 359–370.

    Article  CAS  Google Scholar 

  75. Zaidieh, T., Smith, J. R., Ball, K. E., & An, Q. (2019). ROS as a novel indicator to predict anticancer drug efficacy. BMC Cancer, 19(1), 1–14.

    Article  Google Scholar 

  76. Cheng, M.-H., Pan, C.-Y., Chen, N.-F., Yang, S.-N., Hsieh, S., Wen, Z.-H., Chen, W.-F., Wang, J.-W., Lu, W.-H., & Kuo, H.-M. (2020). Piscidin-1 induces apoptosis via mitochondrial reactive oxygen species-regulated mitochondrial dysfunction in human osteosarcoma cells. Scientific Reports, 10(1), 1–15.

    Google Scholar 

  77. Perillo, B., Di Donato, M., Pezone, A., Di Zazzo, E., Giovannelli, P., Galasso, G., Castoria, G., & Migliaccio, A. (2020). ROS in cancer therapy: The bright side of the moon. Experimental & Molecular Medicine, 52(2), 192–203.

    Article  CAS  Google Scholar 

  78. Cao, J., Zhang, M., Wang, B., Zhang, L., Fang, M., & Zhou, F. (2021). Chemoresistance and metastasis in breast cancer molecular mechanisms and novel clinical strategies. Frontiers in Oncology, 11, 1701.

    Google Scholar 

  79. DeSantis, C. E., Ma, J., Gaudet, M. M., Newman, L. A., Miller, K. D., Goding Sauer, A., Jemal, A., & Siegel, R. L. (2019). Breast cancer statistics, 2019. CA: a Cancer Journal for Clinicians, 69(6), 438–451.

    PubMed  Google Scholar 

  80. Ma, C. X., Gao, F., Luo, J., Northfelt, D. W., Goetz, M., Forero, A., Hoog, J., Naughton, M., Ademuyiwa, F., & Suresh, R. (2017). NeoPalAna: Neoadjuvant palbociclib, a cyclin-dependent kinase 4/6 inhibitor, and anastrozole for clinical stage 2 or 3 estrogen receptor–positive breast cancer. Clinical Cancer Research, 23(15), 4055–4065.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Teo, Z. L., Versaci, S., Dushyanthen, S., Caramia, F., Savas, P., Mintoff, C. P., Zethoven, M., Virassamy, B., Luen, S. J., & McArthur, G. A. (2017). Combined CDK4/6 and PI3Kα inhibition is synergistic and immunogenic in triple-negative breast cancer. Cancer Research, 77(22), 6340–6352.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Mrs. V. Sudha acknowledges Periyar University for the award of University Research Fellowship. Dr. S. Penislusshiyan acknowledges Human Resource Development, Department of Health Research, Ministry of Health and Family Welfare, India, for the award of young scientist fellowship (Ref. No. R.12014/51/2020-HR). The authors thank the Department of Computer Science, Periyar University, for providing the high-performance computer facility.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by SV. Analysis, supervision of the work, and manuscript preparation were done by CL. In silico analysis was carried out by PS. Supervision of the work, correction, review and editing of the manuscript was done by PT. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Palvannan Thayumanavan.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Conflict of Interest

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 103 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijayan, S., Loganathan, C., Sakayanathan, P. et al. Synthesis and Characterization of Plumbagin S-Allyl Cysteine Ester: Determination of Anticancer Activity In Silico and In Vitro. Appl Biochem Biotechnol 194, 5827–5847 (2022). https://doi.org/10.1007/s12010-022-04079-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04079-0

Keywords

Navigation