Skip to main content
Log in

NMR-Based Metabolomic Profiling of Mungbean Infected with Mungbean Yellow Mosaic India Virus

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Mungbean is an important legume mainly cultivated in Southeast Asia known for cheap source of food protein. Yellow mosaic disease (YMD) of mungbean is one of the most damaging diseases caused by mungbean yellow mosaic virus (MYMV) and mungbean yellow mosaic India virus (MYMIV) in India. The genetic basis of YMD resistance of mungbean is not well studied yet. Our present studies aimed to explore the genetic basis of YMD resistance through molecular, biochemical and metabolomics approach. Molecular analysis of YMV-infected mungbean plant materials revealed the presence of MYMIV. Chlorophyll contents were estimated as mosaic symptoms that cause chlorosis and necrosis in infected leaves. Chlorophyll a, b and total chlorophyll content were significantly reduced by 27–55% in infected samples compared non-infected control samples. 1H NMR-based metabolomic profiling of virus-infected mungbean were carried out, and we found that vital changes occurred during the development of MYMIV infection in mungbean. A total of fifty metabolites were identified in mungbean leaf samples. Principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA) separated the severely infected sample from the non-infected samples. Orthogonal partial least discrimination analysis (OPLS-DA) revealed significant differences in MYMIV-infected and non-infected control samples. The featured metabolites in MYMIV infected and control samples were amino acids, carbohydrates, and organic acids. Relative abundance of sucrose, γ-amino butyric acid (GABA), proline, alanine, phenylalanine, tryptophan, pyruvate, ascorbate, and citrates were found as differential metabolites. Our results suggest that metabolic changes in infected mungbean samples is related to the viral acquisition. The present study may help in better understanding the metabolic alterations during biotic stress in mungbean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this manuscript.

References

  1. Pratap, A., Douglas, C., Prajapati, U., Kumari, G., War, A. R., Tomar, R., Pandey, A. K., & Dubey, S. (2020). Breeding progress and future challenges: Biotic stresses. In the mung bean genome, Compendium of plant genomes (pp. 55–80). Springer. 

  2. Pandey, A. K., Burlakoti, R. R., Kenyon, L., & Nair, R. M. (2018). Perspectives and challenges for sustainable management of fungal diseases of mungbean [Vigna radiata (L.) R. Wilczek var. radiata]: A review. Frontiers in Environmental Science, 6, 53.

    Article  Google Scholar 

  3. Nair, R. M., Götz, M., Winter, S., Giri, R. R., Boddepalli, V. N., Sirari, A., Bains, T. S., Taggar, G. K., Dikhsit, H. K., Aski, M., Boopathi, M., Swain, D., Rathore, A., Kumar, V. A., Lii, E. C., & Kenyon, L. (2017). Identification of mungbean lines with tolerance or resistance to yellow mosaic in fields in India where different begomovirus species and different Bemisia tabaci cryptic species predominate. European Journal of Plant Pathology, 149, 349–365.

    Article  CAS  Google Scholar 

  4. Haq, Q. M. I., Arif, A., & Malathi, V. G. (2010). Engineering resistance against mungbean yellow mosaic India virus using antisense RNA. Indian Journal Virology, 21(1), 82–85.

    Article  CAS  Google Scholar 

  5. Kumar, S., Tanti, B., Mukherjee, S. K., & Sahoo, L. (2017). Molecular characterization and infectivity of Mungbean Yellow Mosaic India virus associated with yellow mosaic disease of cowpea and mungbean. Biocatalyst and Agricultural Biotechnology, 11, 183–191.

    Article  Google Scholar 

  6. Karthikeyan, A., Shobhana, V. G., Sudha, M., Raveendran, M., Senthil, N., Pandiyan, M., & Nagarajan, P. (2014). Mung bean yellow mosaic virus (MYMV): A threat to green gram (Vigna radiata) production in Asia. International Journal of Pest Management, 60(4), 314–324.

    Article  CAS  Google Scholar 

  7. Bolton, M. D. (2009). Primary metabolism and plant defense–fuel for the fire. Molecular Plant Microbe Interaction, 22(5), 487–497.

    Article  CAS  Google Scholar 

  8. Villa-Ruano, N., Valle, R. V., Vallejo, L. G. Z., Hernandez, N. P., Ponce, M. V., Adame, V. M. A., & Mortinez, E. B. (2018). 1H NMR based metabolomics profiling for identification of metabolites in Capsicum annuum cv. Mirasol infected by beet mild curly top virus (BMCTV). Food Research International, 106, 870–877.

    Article  PubMed  CAS  Google Scholar 

  9. Chen, L., Wu, J., Li, Z., Liu, Q., Zhao, Z., & Yang, H. (2019). Metabolomics analysis of energy regulated germination and sprouting of organic mun bean (Vigna radiata) using NMR spectroscopy. Food Chemistry, 15, 87–97.

    Article  Google Scholar 

  10. Srivastava, S., Bisht, H., Sidhu, O. P., Srivastava, A., Singh, P. C., Pandey, R., Raj, S., Roy, R., & Nautiyal, C. (2012). Changes in the metabolome and histopathology of Amaranthus hypochondriacus L. in response to Ageratum enation virus infection. Phytochemistry, 80, 8–16.

    Article  PubMed  CAS  Google Scholar 

  11. Haible, D., Kober, S., & Jeske, H. (2006). Rolling circle amplification revolutionizes diagnosis and genomics of geminiviruses. Journal of Virological Methods, 135(1), 9–16.

    Article  PubMed  CAS  Google Scholar 

  12. Jeffery, S. W., & Humphrey, G. F. (1975). New spectrophotometric equation for determining chlorophylls a, b, c and c2 in higher plants, algae and natural phytoplankton. Biochemie and Physiologie der Pflanzen, 167(2), 191–194.

    Article  Google Scholar 

  13. Chen, L., Sun, D., Zhang, X., Shao, D., Lu, Y., & An, Y. (2021). Transcriptome analysis of yellow passion fruit in response to cucumber mosaic virus infection. PLoS ONE, 16, e0247127.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Zhou, Y., Kim, S. Y., Lee, J. S., Shin, B. K., Seo, J. A., Kim, Y. S., Lee, D. Y., & Choi, H. K. (2021). Discrimination of the geographical origin of soybean using NMR based metabolomics. Foods, 10(2), 435.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Kundu, S., Chakraborty, D., Kumdu, A., & Pal, A. (2013). Proteomics approach combined with biochemical attributes to elucidate compatible and incompatible plant-virus interactions between Vigna mungo and Mungbean Yellow Mosaic India Virus. Proteome Science, 11, 15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Bhattacharyya, D., Gnanasekaran, P., Kumar, R. K., Kushwaha, N. K., Sharma, V. K., Yusuf, M. A., & Chakraborty, S. (2015). A geminivirus betasatellite damages the structural and functional integrity of chloroplasts leading to symptom formation and inhibition of photosynthesis. Journal of Experimental Botany, 66(19), 5881–5895.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Hameed, S., Akhtar, K. P., Hameed, A., Gulzar, T., Kiran, S., Yousuf, S., Abbas, G., Asghar, M. J., & Sarwar, N. (2017). Biochemical changes in the leaves of mungbean (Vigna radiata) plants infected by phytoplasma. Turkish Journal of Biochemistry, 42(6), 591–599.

    Article  CAS  Google Scholar 

  18. Pesti, R., Kontra, L., Paul, K., Vass, I., Csorba, T., Havelda, Z., & Varallyay, E. (2019). Differential gene expression and physiological changes during acute or persistent plant virus interactions may contribute to viral symptom differences. PLoS ONE, 14, e0216618.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Less, H., Angelovici, R., Tzin, V., & Galili, G. (2011). Coordinated gene networks regulating Arabidopsis plant metabolism in response to various stresses and nutritional cues. The Plant Cell, 23(4), 1264–1271.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Shalitin, D., & Wolf, S. (2000). Cucumber mosaic virus infection affected sugar transport in melon plants. Plant Physiology, 123(2), 597–604.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Addy, H. S., Nurmalasari, Wahudi, A. H. S., Sholeh, A., Anugrah, C., Iriyanto, E. E. S., Darmanto, W., & Sugiharto, B. (2017). Detection and response of sugarcane against the infection of sugarcane mosaic virus (SCMV) in Indonesia. Agronomy. 7, 50.

  22. Mandal, R., Kathiria, P., Psychogios, N., Bouatra, S., Krishnamurthy, R., Wishart, D., & Kovalchuk, I. (2012). Progeny of tobacco mosaic virus-infected Nicotiana tabacum plants exhibit trans-generational changes in metabolic profiles. Biocatalyst and Agricultural Biotechnology, 1(2), 115–123.

    Article  CAS  Google Scholar 

  23. Zanini, A. A., Feo, L. D., Luna, D. F., Paccioretti, P., Callavino, A., & Rodriguez, M. S. (2020). Cassava common mosaic virus infection causes alterations in chloroplast ultrastructure, function and carbohydrate metabolism of cassava plants. Plant pathology, 70(1), 195–203.

    Article  Google Scholar 

  24. Li, X., An, M., Xia, Z., Bai, X., & Wu, Y. (2017). Transcriptome analysis of watermelon (Citrullus lantus) fruits in response to cucumber green mottle mosaic virus (CGMMV) infection. Scientific Reports, 7, 16747.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Li, L. M., Li, X., Zhao, X. X., Mao, H., Sun, J. H., & Wu, Y. H. (2018). The relationships between sugar metabolism and blood-flesh of watermelon infected with Cucumber green mottle mosaic virus. Journal of Plant Protection, 45(3), 447–454.

    CAS  Google Scholar 

  26. Kogovsek, P., Pompe-Novak, M., Petek, M., Fragner, L., Weckwerth, W., & Gruden, K. (2016). Primary metabolism, phenylpropanoids and antioxidant pathways are regulated in potato as a response to potato virus Y infection. PLoS ONE, 11(1), e0146135.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Guo, L., Su, Q., Yin, J., Yang, Z., Xie, W., Wang, S., Wu, Q., Cui, H., & Zhang, Y. (2019). Amino acid utilization may explain why Bemisia tabaci Q and B differ in their performance on plants infected by the tomato yellow leaf curl virus. Frontiers in Physiology, 10, 489.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tarkowski, L. P., De-Poel, B. V., Hofte, M., & den Ende, W. V. (2019). Sweet immunity: Inulin boosts resistance of lettuce (Lactuca sativa) against grey mold (Botrytis cinerea) in an ethylene-dependent manner. International Journal Molecular Science, 20(5), 1052.

    Article  CAS  Google Scholar 

  29. Wang, G., Kong, J., Cui, D., Zhao, H., Niu, Y., Xu, M., Jiang, G., Zhao, Y., & Wang, W. (2018). Resistance against Ralstonia solanacearum in tomato depends on the methionine cycle and the γ-aminobutyric acid metabolic pathway. The Plant Journal, 97(6), 1032–1047.

    Article  Google Scholar 

  30. Yang, J., Sun, C., Zhang, Y., Fu, D., Zheng, X., & Yu, T. (2017). Induced resistance in tomato fruit by γ-aminobutyric acid for the control of Alternaria rot caused by Alternaria alternata. Food Chemistry, 221, 1014–1020.

    Article  PubMed  CAS  Google Scholar 

  31. Miyashita, Y., & Good, A. G. (2008). Contribution of the GABA shunt to hypoxia-induced alanine accumulation in roots of Arabidopsis thaliana. Plant Cell Physiology, 49(1), 92–102.

    Article  PubMed  CAS  Google Scholar 

  32. Qamar, A., Mysore, K. S., & Senthil, K. M. (2015). Role of proline and pyrroline-5-carboxylate metabolism in plant defence against invading pathogens. Frontiers of Plant Science, 6, 503.

    Article  Google Scholar 

  33. Wu, G. (2009). Amino acids, metabolism, functions, and nutrition. Amino Acids, 37, 1–17.

    Article  PubMed  Google Scholar 

  34. Wang, H., Liu, D., Sun, J., & Zhang, A. (2005). Asparagine synthetase gene TaASN1 from wheat is up-regulated by salt stress, osmotic stress and ABA. Journal of Plant Physiology, 162, 81–89.

    Article  PubMed  CAS  Google Scholar 

  35. Qiao, W., & Fan, L. M. (2008). Nitric oxide signalling in plant responses to abiotic stresses. Journal of Integrative Plant Biology, 50, 1238–1246.

    Article  PubMed  CAS  Google Scholar 

  36. Chuang, C., Prasanth, K. R., & Nagy, P. D. (2017). The glycolytic pyruvate kinase is recruited directly into the viral replicase complex to generate ATP for RNA synthesis. Cell host & microbe, 22(5), 639–652.

    Article  CAS  Google Scholar 

  37. Ryšlavá, H., Müller, K., Semorádová, Š, Synková, H., & Čeřovská, N. (2003). Photosynthesis and activity of phosphoenolpyruvate carboxylase in Nicotiana tabacum L. leaves infected by Potato virus A and Potato virus Y. Photosynthetica, 41(3), 357–363.

    Article  Google Scholar 

Download references

Funding

This study was supported by Department of Biotechnology, Government of India, for research grant (BT/PR13560/COE/34/44/2015) and Central Instruments Facility, Indian Institute of Technology Guwahati for providing NMR facility.

Author information

Authors and Affiliations

Authors

Contributions

Lingaraj Sahoo: conceptualization, experimental design, writing—review and editing. Devendra Kumar Maravi: methodology, investigation, data analysis, writing—original draft, writing—review and editing. Sanjeev Kumar: methodology, writing—original draft, writing—review and editing, formal analysis. All authors have read and agreed for the manuscript.

Corresponding author

Correspondence to Lingaraj Sahoo.

Ethics declarations

Ethical Approval

Since this study does not involve use of any animal, human being or cell line as such, there is no ethical issue.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 17 KB)

Supplementary file2 (DOCX 3708 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maravi, D.K., Kumar, S. & Sahoo, L. NMR-Based Metabolomic Profiling of Mungbean Infected with Mungbean Yellow Mosaic India Virus. Appl Biochem Biotechnol 194, 5808–5826 (2022). https://doi.org/10.1007/s12010-022-04074-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04074-5

Keywords

Navigation