Skip to main content
Log in

Analysis of TCP Transcription Factors Revealed Potential Roles in Plant Growth and Fusarium oxysporum f.sp. cubense Resistance in Banana (cv. Rasthali)

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The TCP transcription factor gene family is highly conserved among the plant species. It plays a major role in the regulation of flower symmetry, cell division, and development of leaf, fibre, and nodule in the plants by controlling the synthesis of various plant hormones. Banana is a major staple crop in the world. However, Fusarium oxysporum f. sp. cubense (Foc) infection is a major threat to banana production. The role of TCP gene family during the Foc infection is not explored till now. Herein, a total of 27 non-redundant TCP (MaTCP) gene sequences were retrieved from the banana genome and analysed for structural characteristics, phylogenetic correlation, subcellular, and chromosomal localizations. Phylogenetic analysis showed that the MaTCP proteins were highly conserved among different species and found to be the closest relative of the Oryza sativa and Zea mays. Promoter analysis of the TCP sequences showed that the cis-acting regulatory elements are associated with various stresses and environmental and hormonal signals. The higher transcript accumulation in developing tissues (fruit finger, leaves, and stem) than of mature tissues (peel and pulp) showed a significant role of MaTCP in banana (cv. Rasthali) growth and development. Further, higher expression of the certain MaTCPs in Foc race 1-infected root (MaTCP2, MaTCP4, MaTCP6) and leaf (MaTCP9 and MaTCP11) tissues of Rasthali indicated their promising role during Fusarium infection. This study will underpin the facet of TCP transcription factors on the development of biotic (Foc) stress resistance in banana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data have been presented in the manuscript.

References

  1. Martín-Trillo, M., & Cubas, P. (2010). TCP genes: A family snapshot ten years later. Trends in plant science, 15(1), 31–39. https://doi.org/10.1016/j.tplants.2009.11.003

    Article  CAS  PubMed  Google Scholar 

  2. Dhaka, N., Bhardwaj, V., Sharma, M. K., & Sharma, R. (2017). Evolving tale of TCPs: New paradigms and old lacunae. Frontiers in plant science, 8(April), 1–8. https://doi.org/10.3389/fpls.2017.00479

    Article  Google Scholar 

  3. Chen, L., Chen, Y. Q., Ding, A. M., Chen, H., Xia, F., Wang, W. F., & Sun, Y. H. (2016). Genome-wide analysis of TCP family in tobacco. Genetics and molecular research, 15(2), 1–14. https://doi.org/10.4238/gmr.15027728

    Article  CAS  Google Scholar 

  4. Huo, Y., Xiong, W., Su, K., Li, Y., Yang, Y., Fu, C., Sun, Z. (2019). Genome-wide analysis of the TCP gene family in switchgrass (Panicum virgatum L.). International journal of genomics, 2019. https://doi.org/10.1155/2019/8514928

  5. Navaud, O., Dabos, P., Carnus, E., Tremousaygue, D., & Hervé, C. (2007). TCP transcription factors predate the emergence of land plants. Journal of molecular evolution, 65(1), 23–33. https://doi.org/10.1007/s00239-006-0174-z

    Article  CAS  PubMed  Google Scholar 

  6. Hu, Z., Yamauchi, T., Yang, J., Jikumaru, Y., Tsuchida-Mayama, T., Ichikawa, H., & Yamaguchi, S. (2014). Strigolactone and cytokinin act antagonistically in regulating rice mesocotyl elongation in darkness. Plant and cell physiology, 55(1), 30–41.

    Article  CAS  Google Scholar 

  7. Lan, J., & Qin, G. (2020). The regulation of CIN-like TCP transcription factors. International journal of molecular sciences, 21(12), 1–17. https://doi.org/10.3390/ijms21124498

    Article  CAS  Google Scholar 

  8. Hervé, C., Dabos, P., Bardet, C., Jauneau, A., Auriac, M. C., Ramboer, A., & Tremousaygue, D. (2009). In vivo interference with AtTCP20 function induces severe plant growth alterations and deregulates the expression of many genes important for development. Plant physiology, 149(3), 1462–1477. https://doi.org/10.1104/pp.108.126136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhou, L., Zhang, J., Yan, J., & Song, R. (2011). Two transposable element insertions are causative mutations for the major domestication gene teosinte branched 1 in modern maize. Cell research, 21(8), 1267–1270. https://doi.org/10.1038/cr.2011.104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Waheed, S., & Zeng, L. (2020). The Critical Role of miRNAs in regulation of flowering time and flower development. Genes, 11(3), 319. https://doi.org/10.3390/genes11030319

    Article  CAS  PubMed Central  Google Scholar 

  11. Li, S., & Zachgo, S. (2013). TCP 3 interacts with R2R3-MYB proteins, promotes flavonoid biosynthesis and negatively regulates the auxin response in Arabidopsis thaliana. The Plant journal, 76(6), 901–913. https://doi.org/10.1111/tpj.12348

    Article  CAS  PubMed  Google Scholar 

  12. Steiner, E., Efroni, I., Gopalraj, M., Saathoff, K., Tseng, T.-S., Kieffer, M., & Weiss, D. (2012). The Arabidopsis O-linked N-acetylglucosamine transferase SPINDLY interacts with class I TCPs to facilitate cytokinin responses in leaves and flowers. The Plant cell, 24(1), 96–108. https://doi.org/10.1105/tpc.111.093518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Davière, J.-M., Wild, M., Regnault, T., Baumberger, N., Eisler, H., Genschik, P., & Achard, P. (2014). Class I TCP-DELLA interactions in inflorescence shoot apex determine plant height. Current biology, 24(16), 1923–1928. https://doi.org/10.1016/j.cub.2014.07.012

    Article  CAS  PubMed  Google Scholar 

  14. Wang, X., Gao, J., Zhu, Z., Dong, X., Wang, X., Ren, G., & Kuai, B. (2015). TCP transcription factors are critical for the coordinated regulation of isochorismate synthase 1 expression in Arabidopsis thaliana. The Plant journal, 82(1), 151–162. https://doi.org/10.1111/tpj.12803

    Article  CAS  PubMed  Google Scholar 

  15. Shahzad, R., Jamil, S., Ahmad, S., Nisar, A., Amina, Z., Saleem, S., & Wang, X. (2021). Harnessing the potential of plant transcription factors in developing climate resilient crops to improve global food security: Current and future perspectives. Saudi journal of biological sciences, 28(4), 2323–2341. https://doi.org/10.1016/j.sjbs.2021.01.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Joshi, R., Wani, S. H., Singh, B., Bohra, A., Dar, Z. A., Lone, A. A., & Singla-Pareek, S. L. (2016). Transcription factors and plants response to drought stress: Current understanding and future directions. Frontiers in plant science, 7(2016JULY), 1–15. https://doi.org/10.3389/fpls.2016.01029

    Article  Google Scholar 

  17. Lin, P., Dong, T., Chen, W., Zou, N., Chen, Y., Li, Y., Liu, J. (2021). Expression analysis of matga8 transcription factor in banana and its defence functional analysis by overexpression in Arabidopsis. International journal of molecular sciences, 22(17). https://doi.org/10.3390/ijms22179344

  18. Bhakta, S., Negi, S., Tak, H., Singh, S., & Ganapathi, T. R. (2022). MusaATAF2 like protein, a stress-related transcription factor, induces leaf senescence by regulating chlorophyll catabolism and H2O2 accumulation. Physiologia plantarum, 174(1). https://doi.org/10.1111/ppl.13593

  19. Negi, S., Tak, H., & Ganapathi, T. R. (2018). A banana NAC transcription factor (MusaSNAC1) impart drought tolerance by modulating stomatal closure and H2O2 content. Plant molecular biology, 96(4–5), 457–471. https://doi.org/10.1007/s11103-018-0710-4

    Article  CAS  PubMed  Google Scholar 

  20. Fan, Z. Q., Kuang, J. F., Fu, C. C., Shan, W., Han, Y. C., Xiao, Y. Y., & Chen, J. Y. (2016). The banana transcriptional repressor MaDEAR1 negatively regulates cell wall-modifying genes involved in fruit ripening. Frontiers in plant science, 7(JULY2016), 1–13. https://doi.org/10.3389/fpls.2016.01021

    Article  Google Scholar 

  21. Liu, J., Liu, M., Wang, J., Zhang, J., Miao, H., Wang, Z., & Jin, Z. (2021). Transcription factor MaMADS36 plays a central role in regulating banana fruit ripening. Journal of experimental botany, 72(20), 7078–7091. https://doi.org/10.1093/jxb/erab341

    Article  CAS  PubMed  Google Scholar 

  22. ShivaniAwasthi, P., Sharma, V., Kaur, N., Kaur, N., Pandey, P., & Tiwari, S. (2017). Genome-wide analysis of transcription factors during somatic embryogenesis in banana (Musa spp.) cv. Grand Naine. PLoS one, 12(8), e0182242.

    Article  Google Scholar 

  23. Deng, G. M., Zhang, S., Yang, Q. S., Gao, H. J., Sheng, O., Bi, F. C., & Hu, C. H. (2021). MaMYB4, an R2R3-MYB repressor transcription factor, negatively regulates the biosynthesis of anthocyanin in banana. Frontiers in plant science, 11(January), 1–14. https://doi.org/10.3389/fpls.2020.600704

    Article  Google Scholar 

  24. Pozo, M. J., Van Loon, L. C., & Pieterse, C. M. J. (2004). Jasmonates-signals in plant-microbe interactions. Journal of plant growth regulation, 23(3), 211–222. https://doi.org/10.1007/s00344-004-0031-5

    Article  CAS  Google Scholar 

  25. Ke, Y., Kang, Y., Wu, M., Liu, H., Hui, S., Zhang, Q., & Wang, S. (2019). Jasmonic acid-involved OsEDS1 signaling in rice-bacteria interactions. Rice, 12(1), 1–12. https://doi.org/10.1186/s12284-019-0283-0

    Article  Google Scholar 

  26. Thatcher, L. F., Manners, J. M., & Kazan, K. (2009). Fusarium oxysporum hijacks COI1-mediated jasmonate signaling to promote disease development in Arabidopsis. The Plant journal, 58(6), 927–939. https://doi.org/10.1111/j.1365-313X.2009.03831.x

    Article  CAS  PubMed  Google Scholar 

  27. Di, X., Gomila, J., & Takken, F. L. W. (2017). Involvement of salicylic acid, ethylene and jasmonic acid signalling pathways in the susceptibility of tomato to Fusarium oxysporum. Molecular plant pathology, 18(7), 1024–1035. https://doi.org/10.1111/mpp.12559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nicolas, M., & Cubas, P. (2016). TCP factors: New kids on the signaling block. Current opinion in plant biology, 33, 33–41. https://doi.org/10.1016/j.pbi.2016.05.006

    Article  CAS  PubMed  Google Scholar 

  29. Voora, V., Larrea, C., & Bermudez, S. (2020). Global market report: Bananas (pp. 12). International Institute for Sustainable Development. https://www.iisd.org/library/global-market-report-banana. Accessed 10 July 2021

  30. Maymon, M., Sela, N., Shpatz, U., Galpaz, N., & Freeman, S. (2020). The origin and current situation of Fusarium oxysporum f. sp. cubense tropical race 4 in Israel and the Middle East. Scientific reports, 10(1), 1–11. https://doi.org/10.1038/s41598-020-58378-9

    Article  CAS  Google Scholar 

  31. Altendorf, S. (2019). Banana Fusarium wilt tropical race 4: A mounting threat to global banana markets? (pp. 13–20). FAO.

    Google Scholar 

  32. Sunisha, C., Sowmya, H. D., Usharani, T. R., Umesha, M., Gopalkrishna, H. R., & Saxena, A. (2020). Deployment of stacked antimicrobial genes in banana for stable tolerance against Fusarium oxysporum f. sp. cubense through genetic transformation. Molecular biotechnology, 62(1), 8–17. https://doi.org/10.1007/s12033-019-00219-

    Article  CAS  PubMed  Google Scholar 

  33. Huala, E., Dickerman, A. W., Garcia-Hernandez, M., Weems, D., Reiser, L., LaFond, F., & Rhee, S. Y. (2001). The Arabidopsis Information Resource (TAIR): A comprehensive database and web-based information retrieval, analysis, and visualization system for a model plant. Nucleic acids research, 29(1), 102–105. https://doi.org/10.1093/nar/29.1.102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kawahara, Y., de la Bastide, M., Hamilton, J. P., Kanamori, H., Mccombie, W. R., Ouyang, S., & Matsumoto, T. (2013). Improvement of the Oryza sativa nipponbare reference genome using next generation sequence and optical map data. Rice, 6(1), 3–10. https://doi.org/10.1186/1939-8433-6-4

    Article  Google Scholar 

  35. D’hont, A., Denoeud, F., Aury, J.-M., Baurens, F.-C., Carreel, F., Garsmeur, O., & Rouard, M. (2012). The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature, 488(7410), 213–217. https://doi.org/10.1038/nature11241

    Article  CAS  PubMed  Google Scholar 

  36. Finn, R. D., Mistry, J., Tate, J., Coggill, P., & Heger, A. (2014). Pfam: The protein families database. Nucleic acids research, 42(1), 222–230. https://doi.org/10.1093/nar/gkt1223

    Article  CAS  Google Scholar 

  37. Schultz, J., Copley, R. R., Doerks, T., Ponting, C. P., & Bork, P. (2000). SMART: A web-based tool for the study of genetically mobile domains. Nucleic acids research, 28(1), 231–234. https://doi.org/10.1093/nar/28.1.231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R. D., & Bairoch, A. (2003). ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic acids research, 31(13), 3784–3788. https://doi.org/10.1093/nar/gkg563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yu, C.-S., Lin, C.-J., & Hwang, J.-K. (2004). Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions. Protein science, 13(5), 1402–1406. https://doi.org/10.1110/ps.03479604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., & Lopez, R. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23(21), 2947–2948. https://doi.org/10.1093/bioinformatics/btm404

    Article  CAS  PubMed  Google Scholar 

  41. Tian, F., Yang, D. C., Meng, Y. Q., Jin, J., & Gao, G. (2020). PlantRegMap: Charting functional regulatory maps in plants. Nucleic acids research, 48(D1), D1104–D1113. https://doi.org/10.1093/nar/gkz1020

    Article  CAS  PubMed  Google Scholar 

  42. Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular biology and evolution, 35(6), 1547. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Letunic, I., & Bork, P. (2007). Interactive Tree Of Life (iTOL): An online tool for phylogenetic tree display and annotation. Bioinformatics, 23(1), 127–128. https://doi.org/10.1093/bioinformatics/btl529

    Article  CAS  PubMed  Google Scholar 

  44. Krzywinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R., Horsman, D., & Marra, M. A. (2009). Circos: An information aesthetic for comparative genomics. Genome research, 19(9), 1639–1645. https://doi.org/10.1101/gr.092759.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hu, B., Jin, J., Guo, A.-Y., Zhang, H., Luo, J., & Gao, G. (2015). GSDS 2.0: An upgraded gene feature visualization server. Bioinformatics, 31(8), 1296–1297. https://doi.org/10.1093/bioinformatics/btu817

    Article  PubMed  Google Scholar 

  46. Bailey, T. L., Boden, M., Buske, F. A., Frith, M., Grant, C. E., Clementi, L., & Noble, W. S. (2009). MEME SUITE: Tools for motif discovery and searching. Nucleic acids research, 37(suppl_2), W202–W208. https://doi.org/10.1093/nar/gkp335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lescot, M., Déhais, P., Thijs, G., Marchal, K., Moreau, Y., Van De Peer, Y., & Rombauts, S. (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic acids research, 30(1), 325–327. https://doi.org/10.1093/nar/30.1.325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Du, Z., Zhou, X., Ling, Y., Zhang, Z., & Su, Z. (2010). agriGO: A GO analysis toolkit for the agricultural community. Nucleic acids research, 38(suppl_2), W64–W70. https://doi.org/10.1093/nar/gkq310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ghag, S. B., Shekhawat, U. K. S., & Ganapathi, T. R. (2014). Transgenic banana plants expressing a Stellaria media defensin gene (Sm-AMP-D1) demonstrate improved resistance to Fusarium oxysporum. Plant cell, tissue and organ culture (PCTOC), 119(2), 247–255. https://doi.org/10.1007/s11240-014-0529-x

    Article  CAS  Google Scholar 

  50. Kaur, N., Alok, A., Kumar, P., Kaur, N., Awasthi, P., Chaturvedi, S., & Tiwari, S. (2020). CRISPR/Cas9 directed editing of lycopene epsilon-cyclase modulates metabolic flux for β-carotene biosynthesis in banana fruit. Metabolic engineering, 59, 76–86. https://doi.org/10.1016/j.ymben.2020.01.008

    Article  CAS  PubMed  Google Scholar 

  51. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods, 25(4), 402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  52. Li, W., Li, D. D., Han, L. H., Tao, M., Hu, Q. Q., Wu, W. Y., & Huang, G. Q. (2017). Genome-wide identification and characterization of TCP transcription factor genes in upland cotton (Gossypium hirsutum). Scientific reports, 7(1), 1–14. https://doi.org/10.1038/s41598-017-10609-2

    Article  CAS  Google Scholar 

  53. Martín-Rodríguez, J., Leija, A., Formey, D., & Hernández, G. (2018). The microRNA319d/TCP10 node regulates the common bean – Rhizobia nitrogen-fixing symbiosis. Frontiers in plant science, 9(August), 1–13. https://doi.org/10.3389/fpls.2018.01175

    Article  Google Scholar 

  54. Ding, S., Cai, Z., Du, H., & Wang, H. (2019). Genome-wide analysis of TCP family genes in Zea mays l. Identified a role for ZmTCP42 in drought tolerance. International Journal of Molecular sciences, 20(11). https://doi.org/10.3390/ijms20112762

  55. Song, C. B., Shan, W., Yang, Y. Y., Tan, X. L., Fan, Z. Q., Chen, J. Y., & Kuang, J. F. (2018). Heterodimerization of MaTCP proteins modulates the transcription of MaXTH10/11 genes during banana fruit ripening. Biochimica et biophysica acta - Gene regulatory mechanisms, 1861(7), 613–622. https://doi.org/10.1016/j.bbagrm.2018.06.005

    Article  CAS  PubMed  Google Scholar 

  56. Moreano, J. P. S., Xu, X., Criollo, C. B. A., Chen, X., Lin, Y., Munir, N., & Lai, Z. (2021). Genome-wide identification and comprehensive analyses of TCP gene family in banana (Musa L.). Tropical plant biology, 1–23. https://doi.org/10.1007/s12042-021-09281-8

  57. Mukhopadhyay, P., & Tyagi, A. K. (2015). OsTCP19 influences developmental and abiotic stress signaling by modulating ABI4-mediated pathways. Scientific reports, 5, 1–12. https://doi.org/10.1038/srep09998

    Article  CAS  Google Scholar 

  58. Jain, M., Khurana, P., Tyagi, A. K., & Khurana, J. P. (2008). Genome-wide analysis of intronless genes in rice and Arabidopsis. Functional and integrative genomics, 8(1), 69–78. https://doi.org/10.1007/s10142-007-0052-9

    Article  CAS  PubMed  Google Scholar 

  59. Zheng, K., Ni, Z., Qu, Y., Cai, Y., Yang, Z., Sun, G., & Chen, Q. (2018). Genome-wide identification and expression analyses of TCP transcription factor genes in Gossypium barbadense. Scientific reports, 8(1), 1–16. https://doi.org/10.1038/s41598-018-32626-5

    Article  CAS  Google Scholar 

  60. Jiu, S., Xu, Y., Wang, J., Wang, L., Wang, S., Ma, C., & Zhang, C. (2019). Genome-wide identification, characterization, and transcript analysis of the TCP transcription factors in Vitis vinifera. Frontiers in genetics, 10, 1–18. https://doi.org/10.3389/fgene.2019.01276

    Article  CAS  Google Scholar 

  61. Sheshadri, S. A., Nishanth, M. J., & Simon, B. (2016). Stress-mediated cis-element transcription factor interactions interconnecting primary and specialized metabolism in planta. Frontiers in plant science, 7, 1725. https://doi.org/10.3389/fpls.2016.01725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Baima, S., Possenti, M., Matteucci, A., Wisman, E., Altamura, M. M., Ruberti, I., & Morelli, G. (2001). The Arabidopsis ATHB-8 HD-zip protein acts as a differentiation-promoting transcription factor of the vascular meristems. Plant physiology, 126(2), 643–655. https://doi.org/10.1104/pp.126.2.643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Li, C., Qiao, Z., Qi, W., Wang, Q., Yuan, Y., Yang, X., & Songa, R. (2015). Genome-wide characterization of cis-acting DNA targets reveals the transcriptional regulatory framework of Opaque2 in maize. The Plant Cell, 27(3), 532–545. https://doi.org/10.1105/tpc.114.134858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dong, H., Li, Y., Fan, H., Zhou, D., & Li, H. (2019). Quantitative proteomics analysis reveals resistance differences of banana cultivar ‘Brazilian’ to Fusarium oxysporum f. sp. cubense races 1 and 4. Journal of proteomics, 203, 103376. https://doi.org/10.1016/j.jprot.2019.05.004

    Article  CAS  PubMed  Google Scholar 

  65. Arie, T. (2019). Fusarium diseases of cultivated plants, control, diagnosis, and molecular and genetic studies. Journal of pesticide science, 44(4), 275–281. https://doi.org/10.1584/jpestics.J19-03

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Barboza-barquero, L., Albertazzi, F. J., Chac, R., & Rivera-m, W. (2020). Transcription factors controlling biotic stress response in potato plants. Physiological and Molecular Plant Pathology, 112(March). https://doi.org/10.1016/j.pmpp.2020.101527

  67. Wang, H., Wang, H., Liu, R., Xu, Y., Lu, Z., & Zhou, C. (2018). Genome-wide identification of TCP family transcription factors in Medicago truncatula reveals significant roles of miR319-targeted TCPs in nodule development. Frontiers in plant science, 9(June), 1–16. https://doi.org/10.3389/fpls.2018.00774

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the National Agri-Food Biotechnology Institute (NABI) for research facilities and the Department of Biotechnology (DBT), Government of India, for the grant (BT/PR25789/GET/119/97/2017). The present research was also supported by the Biotechnology Industry Research Assistance Council (BIRAC) for a banana biofortification project grant. SC is thankful to the Panjab University Chandigarh, and SK is thankful to the Central University of Punjab for PhD registration. The authors would like to acknowledge DBT-eLibrary Consortium (Del-CON) for providing access to online journals.

Funding

This work was supported by the Department of Biotechnology (DBT), Government of India.

Author information

Authors and Affiliations

Authors

Contributions

S.T. conceived and designed the research. S.C and SK performed computational and qRT-PCR analysis. S.T., S.C., and T.R.U. analysed the data. S.C and S.T wrote the manuscript.

Corresponding author

Correspondence to Siddharth Tiwari.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12010_2022_4065_MOESM1_ESM.docx

Supplementary file1 Fig. S1: Chromosomal distribution and arrangement of MaTCP genes in Musa acuminata genome. The name represents the estimated location of genes on chromosomes. Chromosome numbers and sizes (Mb) are shown at the top and right sides, respectively. Fig. S2: Conserved motifs of MaTCP proteins. A total of 6 motifs were identified using MEME and scanned for motif enrichment using MAST. Fig. S3: Gene ontology distribution of MaTCP proteins by blast2go. GO annotation was divided into three categories: cellular component, molecular function and biological process.  Fig. S4: Expression profile of MaTCP genes under Fusarium oxysporum f. sp. cubense TR1 treated root (a) and leaf (b) tissues of banana cv. Rasthali. The expression level of all the transcripts was normalized with actin1 (GenBank Accession No. AF246288) as a housekeeping gene control. Each bar in the graph indicates the mean of three replicates with an error bar plotted as a standard deviation. The symbol * indicates significant difference at p < 0.05 with respect to unpaired student t-test , GraphPad Prism 5. (DOCX 3184 KB)

12010_2022_4065_MOESM2_ESM.docx

Supplementary file2 Table S1: qRT-PCR primers for MaTCP genes expression analysis. Table S2: Physiochemical properties of MaTCP proteins. Table S3: Promoter analysis of MaTCP genes. (DOCX 24 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaturvedi, S., Khan, S., Usharani, T.R. et al. Analysis of TCP Transcription Factors Revealed Potential Roles in Plant Growth and Fusarium oxysporum f.sp. cubense Resistance in Banana (cv. Rasthali). Appl Biochem Biotechnol 194, 5456–5473 (2022). https://doi.org/10.1007/s12010-022-04065-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04065-6

Keywords

Navigation