Skip to main content
Log in

Native SodB Overexpression of Synechocystis sp. PCC 6803 Improves Cell Growth Under Alcohol Stresses Whereas Its Gpx2 Overexpression Impacts on Growth Recovery from Alcohol Stressors

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract 

To overcome the limited resistance to alcohol stress, genetically engineered Synechocystis sp. PCC 6803 strains with overexpressions of genes related with the ROS detoxification system (sodB and gpx2, which encode superoxide dismutase and glutathione peroxidase, respectively) were developed. Three engineered strains including a sodB-overexpressing strain (OE + S), a gpx2-overexpressing strain (OE + G), and a sodB/gpx2-overexpressing strain (OE + SG) grew similarly as wild-type control under normal condition. When compared to wild-type control, OE + S and OE + SG strains grew faster for 4 days under 2.0% (v/v) ethanol and 0.3% (v/v) n-butanol conditions, as well as having higher chlorophyll a levels. On the other hand, the prominent growth recovery of OE + G and OE + SG was noted within 4 days in normal BG11 medium after treating cells with high alcohol stresses for 1 h, in particular 15% ethanol and 2.5% n-butanol. Under 4 days of recovery from butanol stress, specific levels of intracellular pigments including chlorophyll a and carotenoids were dramatically increased in all modified strains. The overexpression of antioxidant genes then revealed a significant improvement of alcohol tolerance in Synechocystis sp. PCC 6803.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The raw data used to support the findings of the study are available from the corresponding author upon request.

References

  1. Shima, J., & Takagi, H. (2009). Stress-tolerance of baker’s-yeast (Saccharomyces cerevisiae) cells: Stress-protective molecules and genes involved in stress tolerance. Biotechnology and Applied Biochemistry, 53, 155–164.

    Article  PubMed  CAS  Google Scholar 

  2. Abe, H., Fujita, Y., Takaoka, Y., Kurita, E., Yano, S., Tanaka, N., & Nakayama, K. (2009). Ethanol-tolerant Saccharomyces cerevisiae strains isolated under selective conditions by over-expression of a proofreading-deficient DNA polymerase δ. Journal of Bioscience and Bioengineering, 108, 199–204.

    Article  PubMed  CAS  Google Scholar 

  3. Kim, H. S., Kim, N. R., Yang, J., & Choi, W. (2011). Identification of novel genes responsible for ethanol and/or thermotolerance by transposon mutagenesis in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 91, 1159–1172.

    Article  PubMed  CAS  Google Scholar 

  4. Aono, R. (1998). Improvement of organic solvent tolerance level of Escherichia coli by overexpression of stress-responsive genes. Extremophiles, 2, 239–248.

    Article  PubMed  CAS  Google Scholar 

  5. Kobayashi, K., Tsukagoshi, N., & Aono, R. (2001). Suppression of hypersensitivity of Escherichia coli acrB mutant to organic solvents by integrational activation of the acrEF operon with the IS1 of IS2 element. Journal of Bacteriology, 183, 2646–2653.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Dunlop, M. J., Dossani, Z. Y., Szmidt, H. L., Chu, H. C., Lee, T. S., Keasling, J. D., Hadi, M., & Mukhopadhyay, A. (2011). Engineering microbial biofuel tolerance and export using efflux pumps. Molecular Systems Biology, 7, 487.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tain, X., Chen, L., Wang, J., Qiao, J., & Zhang, W. (2013). Quantitative proteomics reveals dynamic responses of Synechocystis sp. PCC 6803 to next-generation biofuel butanol. Journal of Proteomics, 78, 326–345.

    Article  Google Scholar 

  8. Ruffing, A. M., & Trahan, C. A. (2014). Biofuel toxicity and mechanisms of biofuel tolerance in three model cyanobacteria. Algal Research, 5, 121–132.

    Article  Google Scholar 

  9. Dunlop, M. J. (2011). Engineering microbes for tolerance to next-generation biofuels. Biotechnology for Biofuels, 4, 32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Anfelt, J., Hallström, B., Nielsen, J., Uhlén, M., & Hudson, E. P. (2013). Using transcriptomics to improve butanol tolerance of Synechocystis sp. strain PCC 6803. Applied and Environment Microbiology, 79, 7419–7427.

    Article  CAS  Google Scholar 

  11. Sikkema, J., de Bont, J. A. M., & Poolman, B. (1995). Mechanisms of membrane toxicity of hydrocarbons. Microbiological Reviews, 59, 201–222.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Du, X., & Takagi, H. (2007). N-Acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species. Applied Microbiology and Biotechnology, 75, 1343–1351.

    Article  PubMed  CAS  Google Scholar 

  13. Qiao, J., Wang, J., Chen, L., Tian, X., Huang, S., Ren, X., & Zhang, W. (2012). Quantitative iTRAQ LC−MS/MS proteomics reveals metabolic responses to biofuel ethanol in cyanobacterial Synechocystis sp. PCC 6803. Journal of Proteome Research, 11, 5286–5300.

    Article  PubMed  CAS  Google Scholar 

  14. Wang, J., Chen, L., Huang, S., Liu, J., Ren, X., Tian, X., Qiao, J., & Zhang, W. (2012). RNA-seq based identification and mutant validation of gene targets related to ethanol resistance in cyanobacterial Synechocystis sp PCC 6803. Biotechnology Biofuels, 5, 89.

    Article  CAS  Google Scholar 

  15. Kaczmarzyk, A., Anfelt, J., Särnergrin, A., & Hudson, E. P. (2014). Overexpression of sigma factor SigB improves temperature and butanol tolerance of Synechocystis sp. PCC6803. Journal of Biotechnology, 182–183, 54–60.

    Article  PubMed  Google Scholar 

  16. Kämäräinen, J., Knoop, H., Standford, N. J., Guerrero, F., Akhtar, M. K., Aro, E. M., Steuer, R., & Jones, P. R. (2012). Physiological tolerance and stoichiometric potential of cyanobacteria for hydrocarbon fuel production. Journal of Biotechnology, 162, 67–74.

    Article  PubMed  Google Scholar 

  17. Kim, J. H., & Suh, K. H. (2005). Light-dependent expression of superoxide dismutase from cyanobacterium Synechocystis sp. strain PCC 6803. Archives of Microbiology, 183, 218–223.

    Article  PubMed  CAS  Google Scholar 

  18. Jakopitsch, C., Rüker, F., Regelsberger, G., Dockal, M., Peschek, G. A., & Obinger, C. (1999). Catalase-peroxidase from the cyanobacterium Synechocystis PCC 6803: Cloning, overexpression in Escherichia coli, and kinetic characterization. Biological Chemistry, 380, 1087–1096.

    Article  PubMed  CAS  Google Scholar 

  19. Tichy, M., & Vermaas, W. (1999). In vivo role of catalase-peroxidase in Synechocystis sp. strain PCC 6803. Journal of Bacteriology, 181, 1875–1882.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Gaber, A., Yoshimura, K., Yamamoto, T., Yabuta, Y., Takeda, T., Miyasaka, H., Nakano, Y., & Shigeoka, S. (2006). Glutathione-peroxidase-like protein of Synechocystis PCC 6803 confers tolerance to oxidative and environmental stresses in transgenic Arabidopsis. Physiologia Plantarum, 128, 251–262.

    Article  CAS  Google Scholar 

  21. Englund, E., Andersen-Ranberg, J., Miao, R., Hamberger, B., & Lindberg, P. (2015). Metabolic engineering of Synechocystis sp. PCC 6803 for production of the plant siterpenoid manoyl oxide. ACS Synthetic Biology, 4, 1270–1278.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M., & Stainer, R. Y. (1979). Generic assignment, strain histories and properties of pure cultures of cyanobacteria. Journal of General Microbiology, 111, 1–61.

    Google Scholar 

  23. Chamovitz, D., Sandmann, G., & Hirschberg, J. (1993). Molecular and biochemical characterization of herbicide-resistant mutants of cyanobacteria reveals that phytoene desaturation is a rate-limiting step in carotenoid biosynthesis. Journal of Biological Chemistry, 268, 17348–17353.

    Article  PubMed  CAS  Google Scholar 

  24. Moran, R. (1982). Formulae for determination of chlorophyllous pigments extracted with N, N-dimethylformamide. Plant Physiology, 69, 1376–1381.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  26. Jana, S., & Choudhuri, M. A. (1982). Glycolate metabolism of three submersed aquatic angiosperms during ageing. Aquatic Botany, 12, 345–354.

    Article  CAS  Google Scholar 

  27. Rahman, M. M., Islam, M. B., Biswas, M., & Alam, A. H. M. K. (2015). In vitro antioxidant and free radical scavenging activity of different parts of Tabebuia pallida growing in Bangladesh. BMC Research Notes, 8, 621.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Mohamed, A., & Jansson, C. (1989). Influence of light on accumulation of photosynthesis-specific transcripts in the cyanobacterium Synechocystis 6803. Plant Molecular Biology, 13, 693–700.

    Article  PubMed  CAS  Google Scholar 

  29. Towijit, U., Songruk, N., Lindblad, P., Incharoensakdi, A., & Jantaro, S. (2018). Co-overexpression of native phospholipid-biosynthetic genes plsX and plsC enhanced lipid production in Synechocystis sp PCC 6803. Science Reports, 8, 13510.

    Article  Google Scholar 

  30. Eungrasamee, K., Miao, R., Incharoensakdi, A., Lindblad, P., & Jantaro, S. (2019). Improved lipid production via fatty acid biosynthesis and free fatty acid recycling in engineered Synechocystis sp PCC 6803. Biotechnol Biofuels, 12, 8.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Eungrasamee, K., Incharoensakdi, A., Lindblad, P., & Jantaro, S. (2020). Synechocystis sp PCC 6803 overexpressing genes involved in CBB cycle and free fatty acid cycling enhances the significant levels of intracellular lipids and secreted free fatty acids. Sci Rep, 10, 4515.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48, 909–930.

    Article  PubMed  CAS  Google Scholar 

  33. Herbert, S. K., Samson, G., Fork, D. C., & Laudenbach, D. E. (1992). Characterization of damage to photosystems I and II in a cyanobacterium lacking detectable iron O2- dismutase activity. Proceedings of the National academy of Sciences of the United States of America, 89, 8716–8720.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Chadd, H. E., Newman, J., Mann, N. H., & Carr, N. G. (1996). Identification of iron superoxide dismutase and a copper/zinc superoxide dismutase enzyme activity within the marine cyanobacterium Synechococcus sp. WH 7803. FEMS Microbiology Letters, 138, 161–165.

    Article  PubMed  CAS  Google Scholar 

  35. Thomas, D. J., Avenson, T. J., Thomas, J. B., & Herbert, S. K. (1998). A cyanobacterium lacking iron superoxide dismutase is sensitized to oxidative stress induced with methyl viologen but is not sensitized to oxidative stress induced with norflurazon. Plant Physiology, 116, 1593–1602.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully thank Prof. Peter Lindblad, Microbial Chemistry, Department of Chemistry–Ångström, Uppsala University, for providing the expression vector pEERM to our work.

Funding

This work was supported by the Scholarship from Chulalongkorn University to develop research potential for the Department of Biochemistry, Faculty of Science, Chulalongkorn University (Ratchadaphiseksomphot Endowment Fund) to PV. This research is also funded by Chulalongkorn University: CU_GR_62_25_23_08 to SJ.

Author information

Authors and Affiliations

Authors

Contributions

Phuwanet Vachiranuvathin was responsible for study conception, main experimenter, data collection, analysis, and draft manuscript writing; Vetaka Tharasirivat was responsible for experimenter and data collection; Thitaporn Hemnusornnanon was responsible for experimenter and data collection; Saowarath Jantaro was responsible for study conception, critical revision and manuscript writing, and final approval of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Saowarath Jantaro.

Ethics declarations

Ethics Approval

Not applicable.

Additional Declarations for Articles in Life Science Journals that Report the Results of Studies Involving Humans and/or Animals

This work does not involve humans or animals.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9818 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vachiranuvathin, P., Tharasirivat, V., Hemnusornnanon, T. et al. Native SodB Overexpression of Synechocystis sp. PCC 6803 Improves Cell Growth Under Alcohol Stresses Whereas Its Gpx2 Overexpression Impacts on Growth Recovery from Alcohol Stressors. Appl Biochem Biotechnol 194, 5748–5766 (2022). https://doi.org/10.1007/s12010-022-04061-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04061-w

Keywords

Navigation