Skip to main content
Log in

Effect of Fungal Fermentation on Enhancement of Nutritional Value and Antioxidant Activity of Defatted Oilseed Meals

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Agro-industrial residues contain high nutritive value. Nowadays, various advanced researches have been done for the production of various value-added products, using these wastes as substrates in the fermentation media. Flaxseed, mustard, and rice bran meal, residues of oil industry, were used as substrates for fermentation. Submerged fermentation with soil-isolated fungal species of the genus Aspergillus sp. was done for oil production by using these substrates in the fermentation media. Effect of fermentation by the oleaginous species of Aspergillus on the nutritive value and functional properties of flaxseed, mustard, and rice bran meal has been discussed for the first time in the present study. After fermentation, the seed meals showed substantial increase in the protein and ash content. The fungal strains utilized the carbohydrate present in the seed meals for the production of highly nutritional metabolites, which decrease the sugar contents of the meals. The fungi also showed extracellular amylase and cellulase activities which helped to hydrolyze the carbohydrates present in these meals, to utilize them for their metabolism. The enhancement was also observed in terms of antioxidant activity of the meals. Increase in the total phenolic and flavonoid contents was observed after fermentation along with radical scavenging activity of 1,1-diphenyl-2-picrylhydrazyl and 2,2-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid reagents and ferric reduction potential. These effects of fermentation modify these cheap waste materials into nutrient dense substrates, which could be further used in the formulation of value-added products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

The data sets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

Not applicable.

References

  1. Shirahigue, L. D., & Ceccato-Antonini, S. R. (2020). Agro-industrial wastes as sources of bioactive compounds for food and fermentation industries. Ciencia Rural, 50(4). https://doi.org/10.1590/0103-8478cr20190857

  2. Stodolak, B., Starzyńska-Janiszewska, A., Wywrocka-Gurgul, A., & Wikiera, A. (2017). Solid-state fermented flaxseed oil cake of improved antioxidant capacity as potential food additive. Journal of Food Processing and Preservation, 41(2), 1–9. https://doi.org/10.1111/jfpp.12855

    Article  CAS  Google Scholar 

  3. Panaite, T., Ropota, M., Turcu, R., Olteanu, M., Corbu, A. R., & Nour, V. (2017). Flaxseeds: Nutritional potential and bioactive com- pounds. Food Science and Technology Bulletin., 74, 65–73.

    CAS  Google Scholar 

  4. Swati, S. S., & Das, M. (2015). A brief overview: Present status on utilization of mustard oil and cake. Indian Journal of Traditional Knowledge, 14(2), 244–250.

    Google Scholar 

  5. dos Santos-Oliveira, M., Cipolatti, E. P., Furlong, E. B., & de Souza-Soares, L. (2012). Compostos fenólicos e atividade antioxidante em farelo de arroz (Oryza sativa) fermentado. Ciencia e Tecnologia de Alimentos, 32(3), 531–537. https://doi.org/10.1590/S0101-20612012005000071

    Article  Google Scholar 

  6. Dua, A., Chander, S., Agrawal, S., & Mahajan, R. (2014). Antioxidants from defatted Indian Mustard (Brassica Juncea) protect biomolecules against in vitro oxidation. Physiology and Molecular Biology of Plants, 20(4), 539–543. https://doi.org/10.1007/s12298-014-0260-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nisa, K., Rosyida, V. T., Nurhayati, S., Indrianingsih, A. W., Darsih, C., & Apriyana, W. (2019). Total phenolic contents and antioxidant activity of rice bran fermented with lactic acid bacteria. IOP Conference Series: Earth and Environmental Science, 251(1). https://doi.org/10.1088/1755-1315/251/1/012020

  8. Kamoun, O., Ayadi, I., Guerfali, M., Belghith, H., Gargouri, A., & Trigui-Lahiani, H. (2018). Fusarium verticillioides as a single-cell oil source for biodiesel production and dietary supplements. Process Safety and Environmental Protection, 118(June), 68–78. https://doi.org/10.1016/j.psep.2018.06.027

    Article  CAS  Google Scholar 

  9. Khot, M., Gupta, R., Barve, K., Zinjarde, S., Govindwar, S., & RaviKumar, A. (2015). Fungal production of single cell oil using untreated copra cake and evaluation of its fuel properties for biodiesel. Journal of Microbiology and Biotechnology, 25(4), 459–463. https://doi.org/10.4014/jmb.1407.07074

    Article  CAS  PubMed  Google Scholar 

  10. Sugiharto, S., Isroli, I., Yudiarti, T., Widiastuti, E., Wahyuni, H. I., & Sartono, T. A. (2018). Effect of two-step fermentation by Chrysonilia crassa and Bacillus subtilis on nutritional values and antioxidative properties of agro-industrial by-products as poultry feed ingredients. Journal of Advanced Veterinary and Animal Research, 5(4), 472–480. https://doi.org/10.5455/javar.2018.e301

    Article  PubMed  PubMed Central  Google Scholar 

  11. Nkhata, S. G., Ayua, E., Kamau, E. H., & Shingiro, J. B. (2018). Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. Food Science and Nutrition, 6(8), 2446–2458. https://doi.org/10.1002/fsn3.846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Aliyah, A., Alamsyah, G., Ramadhani, R., & Hermansyah, H. (2017). Production of α-amylase and β-glucosidase from Aspergillus niger by solid state fermentation method on biomass waste substrates from rice husk, bagasse and corn cob. Energy Procedia, 136, 418–423.

    Article  CAS  Google Scholar 

  13. Dhage, A. B., & Rathod, V. K. (2017). Intensification of β- glucosidase enzyme production from Aspergillus niger using ex- tractive fermentation with an aqueous two-phase system. Green Process Synthesis, 6, 441–445.

    Article  CAS  Google Scholar 

  14. Zhai, S. S., Zhou, T., Li, M. M., Zhu, Y. W., Li, M. C., Feng, P. S., Zhang, X. F., Ye, H., Wang, W. C., & Yang, L. (2019). Fermentation of flaxseed cake increases its nutritional value and utilization in ducklings. Poultry Science, 98(11), 5636–5647. https://doi.org/10.3382/ps/pez326

    Article  CAS  PubMed  Google Scholar 

  15. Srivastava, R. K. (2018). Enhanced shelf life with improved food quality from fermentation processes. Journal of Food Technology and Preservation, 2(3), 1–7. http://www.alliedacademies.org/food-technology-and-preservation/

  16. Monica, S. J., Joseph, M., & Iyer, P. (2016). A study on invitro antioxidant activity of fermented and unfermented flaxseed (Linum usitatissimum L). World Journal of Pharmaceutical Research, 5(4), 1720–1728. https://doi.org/10.20959/wjpr20164-5996

    Article  CAS  Google Scholar 

  17. Miri, S., Hajihosseini, R., Saedi, H., Vaseghi, M., & Rasooli, A. (2019). Fermented soybean meal extract improves oxidative stress factors in the lung of inflammation/infection animal model. Annals of Microbiology, 69(13), 1507–1515. https://doi.org/10.1007/s13213-019-01534-y

    Article  CAS  Google Scholar 

  18. Ma, J., Zhu, X., Shi, L., Ni, C., Hou, J., & Cheng, J. (2019). Enhancement of soluble protein, polypeptide production and functional properties of heat-denatured soybean meal by fermentation of Monascus purpureus 04093. CYTA - Journal of Food, 17(1), 1014–1022. https://doi.org/10.1080/19476337.2019.1695677

    Article  CAS  Google Scholar 

  19. Shi, C., He, J., Yu, J., Yu, B., Huang, Z., Mao, X., Zheng, P., & Chen, D. (2015). Solid state fermentation of rapeseed cake with Aspergillus niger for degrading glucosinolates and upgrading nutritional value. Journal of Animal Science and Biotechnology, 6(1), 1–7. https://doi.org/10.1186/s40104-015-0015-2

    Article  CAS  Google Scholar 

  20. Karimi, S., Soofiani, N. M., Mahboubi, A., & Taherzadeh, M. J. (2018). Use of organicwastes and industrial by-products to produce filamentous fungi with potential as aqua-feed ingredients. Sustainability (Switzerland), 10(9). https://doi.org/10.3390/su10093296

  21. Mrudula, S., & Murugammal, R. (2011). Production of cellulase by Aspergillus niger under submerged and solid state fermentation using coir waste as a substrate. Brazilian Journal of Microbiology, 42(3), 1119–1127. https://doi.org/10.1590/S1517-83822011000300033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Thakur, M. S., Prapulla, S. G., & Karanth, N. G. (1988). Microscopic Observation of Sudan Black B Staining to Monitor Lipid Production by Microbes. Journal of Chemical Technology Biotechnology., 42, 129–134. https://doi.org/10.1002/jctb.280420206

    Article  CAS  Google Scholar 

  23. McClenny, N. (2005). Laboratory detection and identification of Aspergillus species by microscopic observation and culture: The traditional approach. Medical Mycology, 43(SUPPL. 1), 125–128. https://doi.org/10.1080/13693780500052222

    Article  Google Scholar 

  24. A.O.A.C. Official Methods of Analysis. 17th ed. of the association of official analytical chemists. Gaithersburg M D.USA. 2000.

  25. Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry. Physiol., 37(8), 911–917. https://doi.org/10.1139/o59-099

    Article  CAS  Google Scholar 

  26. Bertrand, T. F., Frederic, T., & Robert, N. (2004). Production and partial characterization of a thermostable amylase from Ascomycetes yeast strain isolated from starchy soil (pp. 53–55). McGraw-Hill Inc.

    Google Scholar 

  27. Ghose, T. K. (1987). Measurement of caellulase activities. Pure and Applied Chemistry, 59(2), 257–268.

    Article  CAS  Google Scholar 

  28. Singleton, V. L., Ortofehr, R., & Lamuela-Raventos, R. M. (1999). Analysis of total phenols and other oxidation substrate and antioxidants by means of Folin-Ciocalteau reagent. Methods in Enzymology, 299, 152–178.

    Article  CAS  Google Scholar 

  29. Jagadish, L. K., Venkata Krishnan, V., Shenbhagaraman, R., & Kaviyarasan, V. (2009). Comparitive study on the antioxidant, anticancer and antimicrobial property of Agaricus bisporus (J. E. Lange) Imbach before and after boiling. African Journal of Biotechnology, 8, 654–661.

    CAS  Google Scholar 

  30. Yadav, M., Yadav, A., & Yadav, J. P. (2014). In vitro antioxidant activity and total phenolic content of endophytic fungi isolated from Eugenia jambolana Lam. Asian Pacific Journal of Tropical Medicine, 7, S256–S261.

    Article  Google Scholar 

  31. Adhikari, A., Darbar, S., Chatterjee, T., Das, M., et al. (2018). Spectroscopic studies on dual role of natural flavonoids in detoxification of lead poisoning: Bench-to-Bedside Preclinical Trial. ACS Omega, 3, 15975–15987. https://doi.org/10.1021/acsomega.8b02046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Miller, G. L. (1959). Use of Dinitrosalicylic acid reagent for the determination of reducing sugar. Analytical Chemistry., 31(3), 426–428. https://doi.org/10.1021/ac60147a030

    Article  CAS  Google Scholar 

  33. Cai, C., Ma, J., Han, C., Jin, Y., Zhao, G., & He, X. (2019). Extraction and antioxidant activity of total triterpenoids in the mycelium of a medicinal fungus, Sanghuangporus sanghuang. Science and Reports, 9, 1–10.

    Google Scholar 

  34. Othman, A., Ismail, N., Ghani, A., & Adenan, I. (2007). Antioxidant capacity and phenolic content of cocoa beans. Food Chemistry, 100(4), 1523–1530.

    Article  CAS  Google Scholar 

  35. Stodolak, B., Starzyńska-Janiszewska, A., & Mickowska, B. (2013). Effect of flaxseed oil-cake addition on the nutritional value of grass pea tempeh. Food Science & Technology Research, 19(6), 1107–1114.

    Article  CAS  Google Scholar 

  36. Bandikari, R., Katike, U., Seelam, N. S., & Obulam, V. S. R. (2017). Valorization of de-oiled cakes for xylanase production and optimization using central composite design by Trichoderma koeningi isolate. Turkish Journal of Biochemistry., 42(3), 317–328. https://doi.org/10.1515/tjb-2016-0290

    Article  CAS  Google Scholar 

  37. Kumari, N., Vinita, N. K., & Rani, P. (2018). Nutrient composition of full fat and defatted rice bran. Asian Journal of Dairy and Food Research, 37(1), 77–80. https://doi.org/10.18805/ajdfr.DR-1277

    Article  Google Scholar 

  38. Muniraj, I. K., Xiao, L., Hu, Z., & Zhan, X. (2017). Screening and characterization of oleaginous fungi from Irish soil for growth under low carbon substrates. International Journal of Current Microbiology and Applied Sciences, 6(12), 772–781. https://doi.org/10.20546/ijcmas.2017.612.082

    Article  CAS  Google Scholar 

  39. Jannathulla, R., Dayal, J. S., Ambasankar, K., & Muralidhar, M. (2017). Effect of fungal fermentation on the nutrient digestibility of guar meal in Penaeus vannamei. Indian Journal of Fisheries, 64(3), 67–74. https://doi.org/10.21077/ijf.2017.64.3.68434-10

    Article  Google Scholar 

  40. Simwaka, J. E., Chamba, M. V. M., Huiming, Z., Masamba, K. G., & Luo, Y. (2017). Effect of fermentation on physicochemical and antinutritional factors of complementary foods from millet, sorghum, pumpkin and amaranth seed flours. International Food Research Journal, 24(5), 1869–1879.

    CAS  Google Scholar 

  41. Mukherjee, R., Chakraborty, R., & Dutta, A. (2016). Role of fermentation in improving nutritional quality of soybean meal - A review. Asian-Australasian Journal of Animal Sciences, 29(11), 1523–1529. https://doi.org/10.5713/ajas.15.0627

    Article  CAS  PubMed  Google Scholar 

  42. Yaşar, S., & Tosun, S. (2020). Improving nutritional qualities of tomato pomace by Pleurotusostreatus and Phanerochaetechrysosporium fermentation. KSU Journal of Agriculture and Nature, 23(2), 527–534. https://doi.org/10.18016/ksutarimdoga.vi.629347

    Article  Google Scholar 

  43. Monga, M., Goyal, M., Kl, K., & Soni, G. (2011). Production and stabilization of amylases from Aspergillus niger. 129–134. http://mycosphere.org/pdfs/MC2_2_No3.pdf

  44. Khan, J. A., & Kumar, Y. S. (2011). Production of alpha amylases by aspergillus niger using cheaper substrates employing solid state fermentation. International Journal of Plant, Animal and Environmental Sciencies, 1(3), 100–108.

    CAS  Google Scholar 

  45. Singh, A., Singh, N., & Bishnoi, N. R. (2009). Production of cellulases by Aspergillus heteromorphus from wheat straw under submerged fermentation. International Journal of Agricultural and Biosystems Engineering, 3(3), 124–127.

    Google Scholar 

  46. Cheng, J., Choi, B. K., Yang, S. H., & Suh, J. W. (2016). Effect of fermentation on the antioxidant activity of rice bran by monascus pilosus KCCM60084. Journal of Applied Biological Chemistry, 59(1), 57–62. https://doi.org/10.3839/jabc.2016.011

    Article  CAS  Google Scholar 

  47. Park, S. Y., Jang, H. L., Lee, J. H., Choi, Y., Kim, H., Hwang, J., Seo, D., Kim, S., & Nam, J. S. (2017). Changes in the phenolic compounds and antioxidant activities of mustard leaf (Brassica juncea) kimchi extracts during different fermentation periods. Food Science and Biotechnology, 26(1), 105–112. https://doi.org/10.1007/s10068-017-0014-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sadh, P. K., Saharan, P., Duhan, S., & Duhan, J. S. (2017). Bio-enrichment of phenolics and antioxidant activity of combination of Oryza sativa and Lablab purpureus fermented with GRAS filamentous fungi. Resource-Efficient Technologies, 3(3), 347–352. https://doi.org/10.1016/j.reffit.2017.02.008

    Article  Google Scholar 

Download references

Acknowledgements

I sincerely thank and express my gratitude to IIEST, Shibpur, for supporting me throughout my work.

Author information

Authors and Affiliations

Authors

Contributions

Ruma Dutta: investigation, formal analysis, validation, writing original draft.

Saheli Ghosal: formal analysis, validation.

Dipak K. Bhattacharyya: conceptualization, methodology, supervision, writing—review and editing.

Jayati Bhowal: conceptualization, supervision, writing—review and editing.

Corresponding author

Correspondence to Jayati Bhowal.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, R., Ghosal, S., Bhattacharyya, D.K. et al. Effect of Fungal Fermentation on Enhancement of Nutritional Value and Antioxidant Activity of Defatted Oilseed Meals. Appl Biochem Biotechnol 195, 2172–2195 (2023). https://doi.org/10.1007/s12010-022-04059-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04059-4

Keywords

Navigation