Skip to main content
Log in

A Method for Detecting Antioxidant Activity of Antioxidants by Utilizing Oxidative Damage of Pigment Protein

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A simple and effective method for detecting the antioxidant activity by utilizing oxidative damage of pigment proteins was developed. In this method, phycocyanin and bovine hemoglobin pigment proteins were used as substrates attacked by free radicals; AAPH was used as a free radical initiator; and Trolox as a positive control; and the fermentation products of Lactobacillus plantarum 793, phycocyanin hydrolysates, salmon skin collagen hydrolysates, and synthetic peptides PMRGGYHY and FCVLRP are antioxidants inspected in this study. Because of being attacked by free radicals, the absorbance of the pigment proteins at their characteristic absorption peak changes with time. By recording the time-varying curve at the characteristic absorption peak of the pigment protein in the blank/negative control sample, the Trolox positive control sample, and the samples of inspected antioxidants, the antioxidant activity could be calculated by using the specific equation. The linear detection ranges of Trolox in the phycocyanin assay and the bovine hemoglobin assay were 1–4 μM and 4–24 μM, respectively. Compared with the ORAC assay, the antioxidant activities of the samples measured by this method were slightly lower. The method proposed in this study reflects the protective effects of inspected antioxidants on pigment proteins, which could potentially serve as new biomarkers of oxidative damage processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  1. Winterbourn, C. C. (2008). Reconciling the chemistry and biology of reactive oxygen species. Nature Chemical Biology, 4(5), 278–286.

    Article  CAS  Google Scholar 

  2. Halliwell, B. (2012). Free radicals and antioxidants: Updating a personal view. Nutrition Reviews, 70(5), 257–265.

    Article  Google Scholar 

  3. Imlay, J. A. (2008). Cellular defenses against superoxide and hydrogen peroxide. Annual Review of Biochemistry, 77, 755–776.

    Article  CAS  Google Scholar 

  4. Yang, S., & Lian, G. (2020). ROS and diseases: Role in metabolism and energy supply. Molecular and Cellular Biochemistry, 467(1–2), 1–12.

    Article  CAS  Google Scholar 

  5. Jakubczyk, K., Dec, K., Kałduńska, J., Kawczuga, D., Kochman, J., & Janda, K. (2020). Reactive oxygen species - Sources, functions, oxidative damage. Polski merkuriusz lekarski : Organ Polskiego Towarzystwa Lekarskiego, 48(284), 124–127.

    Google Scholar 

  6. Migdal, C., & Serres, M. (2011). Reactive oxygen species and oxidative stress. Medecine Sciences : M/S, 27(4), 405–412.

    Article  Google Scholar 

  7. Moon, J. K., & Shibamoto, T. (2009). Antioxidant assays for plant and food components. Journal of Agricultural and Food Chemistry, 57(5), 1655–1666.

    Article  CAS  Google Scholar 

  8. Jia, S. M., Liu, X. F., Kong, D. M., & Shen, H. X. (2012). A simple, post-additional antioxidant capacity assay using adenosine triphosphate-stabilized 2,2’-azinobis(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) radical cation in a G-quadruplex DNAzyme catalyzed ABTS-H2O2 system. Biosensors & Bioelectronics, 35(1), 407–412.

    Article  CAS  Google Scholar 

  9. Li, X. (2012). Improved pyrogallol autoxidation method: A reliable and cheap superoxide-scavenging assay suitable for all antioxidants. Journal of Agricultural and Food Chemistry, 60(25), 6418–6424.

    Article  CAS  Google Scholar 

  10. Naser, N. A., Alasedi, K. M., & Khan, Z. A. (2018). New approach for determination of sulfadiazine in pharmaceutical preparations using 4(4-sulphophenylazo)pyrogallol: Kinetic spectrophotometric method. Spectrochimica acta. Part A, Molecular and Biomolecular Spectroscopy, 201, 267–280.

    Article  CAS  Google Scholar 

  11. Kurilich, A. C., Jeffery, E. H., Juvik, J. A., Wallig, M. A., & Klein, B. P. (2002). Antioxidant capacity of different broccoli (Brassica oleracea) genotypes using the oxygen radical absorbance capacity (ORAC) assay. Journal of Agricultural And Food Chemistry, 50(18), 5053–5057.

    Article  CAS  Google Scholar 

  12. Nwachukwu, I. D., & Aluko, R. E. (2019). Structural and functional properties of food protein-derived antioxidant peptides. Journal of Food Biochemistry, 43(1), e12761.

    Article  Google Scholar 

  13. Gray, M. J., Wholey, W. Y., & Jakob, U. (2013). Bacterial responses to reactive chlorine species. Annual Review Of Microbiology, 67, 141–160.

    Article  CAS  Google Scholar 

  14. Poljsak, B., Šuput, D., & Milisav, I. (2013). Achieving the balance between ROS and antioxidants: When to use the synthetic antioxidants. Oxidative Medicine and Cellular Longevity, 2013, 956792.

    Article  Google Scholar 

  15. Cossu, A., Dou, F., Young, G. M., & Nitin, N. (2017). Biomarkers of oxidative damage in bacteria for the assessment of sanitation efficacy in lettuce wash water. Applied Microbiology and Biotechnology, 101(13), 5365–5375.

    Article  CAS  Google Scholar 

  16. Kielkopf, C. L., Bauer, W., & Urbatsch, I. L. (2020). Methods for measuring the concentrations of proteins. Cold Spring Harbor protocols, 2020(4), 102277.

    Article  Google Scholar 

  17. Pagels, F., Guedes, A. C., Amaro, H. M., Kijjoa, A., & Vasconcelos, V. (2019). Phycobiliproteins from cyanobacteria: Chemistry and biotechnological applications. Biotechnology Advances, 37(3), 422–443.

    Article  CAS  Google Scholar 

  18. Gell, D. A. (2018). Structure and function of haemoglobins. Blood Cells, Molecules & Diseases, 70, 13–42.

    Article  CAS  Google Scholar 

  19. Gantar, M., Simović, D., Djilas, S., Gonzalez, W. W., & Miksovska, J. (2012). Isolation, characterization and antioxidative activity of C-phycocyanin from Limnothrix sp. strain 37–2–1. Journal of Biotechnology, 159(1–2), 21–6.

    Article  CAS  Google Scholar 

  20. Liu, D., Huang, J., Wu, C., Liu, C., Huang, R., Wang, W., Yin, T., Yan, X., He, H., & Chen, L. (2019). Purification, characterization, and application for preparation of antioxidant peptides of extracellular protease from Pseudoalteromonas sp. H2. Molecules (Basel, Switzerland), 24(18), 3373.

  21. Wu, R., Wu, C., Liu, D., Yang, X., Huang, J., Zhang, J., Liao, B., & He, H. (2018). Antioxidant and anti-freezing peptides from salmon collagen hydrolysate prepared by bacterial extracellular protease. Food Chemistry, 248, 346–352.

    Article  CAS  Google Scholar 

  22. Wu, R., Huang, J., Huan, R., Chen, L., Yi, C., Liu, D., Wang, M., Liu, C., & He, H. (2021). New insights into the structure-activity relationships of antioxidative peptide PMRGGGGYHY. Food chemistry, 337, 127678.

    Article  CAS  Google Scholar 

  23. Hai-Lun, H., Xiu-Lan, C., Cai-Yun, S., Yu-Zhong, Z., & Bai-Cheng, Z. (2006). Analysis of novel angiotensin-I-converting enzyme inhibitory peptides from protease-hydrolyzed marine shrimp Acetes chinensis. Journal of Peptide Science : An Official Publication of the European Peptide Society, 12(11), 726–733.

    Article  Google Scholar 

  24. Ramos, I. I., Gregório, B. J., Barreiros, L., Magalhães, L. M., Tóth, I. V., Reis, S., Lima, J. L., & Segundo, M. A. (2016). Programmable flow system for automation of oxygen radical absorbance capacity assay using pyrogallol red for estimation of antioxidant reactivity. Talanta, 150, 599–606.

    Article  CAS  Google Scholar 

  25. Terashima, M., Nakatani, I., Harima, A., Nakamura, S., & Shiiba, M. (2007). New method to evaluate water-soluble antioxidant activity based on protein structural change. Journal of Agricultural and Food Chemistry, 55(1), 165–169.

    Article  CAS  Google Scholar 

  26. Zamora, R. A., Fuentes-Lemus, E., Barrias, P., Herrera-Morande, A., Mura, F., Guixé, V., Castro-Fernandez, V., Rojas, T., López-Alarcón, C., Aguirre, P., Rivas-Aravena, A., & Aspée, A. (2020). Free radicals derived from γ-radiolysis of water and AAPH thermolysis mediate oxidative crosslinking of eGFP involving Tyr-Tyr and Tyr-Cys bonds: The fluorescence of the protein is conserved only towards peroxyl radicals. Free Radical Biology & Medicine, 150, 40–52.

    Article  CAS  Google Scholar 

  27. Niki, E. (1990). Free radical initiators as source of water- or lipid-soluble peroxyl radicals. Methods in Enzymology, 186, 100–108.

    Article  CAS  Google Scholar 

  28. Czubak, K., Antosik, A., Cichon, N., & Zbikowska, H. M. (2017). Vitamin C and Trolox decrease oxidative stress and hemolysis in cold-stored human red blood cells. Redox report : Communications in Free Radical Research, 22(6), 445–450.

    Article  CAS  Google Scholar 

  29. Wang, M., Lei, M., Samina, N., Chen, L., Liu, C., Yin, T., Yan, X., Wu, C., He, H., & Yi, C. (2020). Impact of Lactobacillus plantarum 423 fermentation on the antioxidant activity and flavor properties of rice bran and wheat bran. Food Chemistry, 330, 127156.

    Article  CAS  Google Scholar 

  30. Won, Y. G., Yu, H. H., Chang, Y. H., & Hwang, H. J. (2015). Lactic acid bacterial starter culture with antioxidant and γ-aminobutyric acid biosynthetic activities isolated from flatfish-Sikhae fermentation. Journal of Medicinal Food, 18(12), 1371–1379.

    Article  CAS  Google Scholar 

  31. Wu, R., Chen, L., Liu, D., Huang, J., Zhang, J., Xiao, X., Lei, M., Chen, Y., & He, H. (2017). Preparation of antioxidant peptides from salmon byproducts with bacterial extracellular proteases. Marine Drugs, 15(1), 4.

  32. Matsui, R., Honda, R., Kanome, M., Hagiwara, A., Matsuda, Y., Togitani, T., Ikemoto, N., & Terashima, M. (2018). Designing antioxidant peptides based on the antioxidant properties of the amino acid side-chains. Food Chemistry, 245, 750–755.

    Article  CAS  Google Scholar 

  33. Dávalos, A., Gómez-Cordovés, C., & Bartolomé, B. (2004). Extending applicability of the oxygen radical absorbance capacity (ORAC-fluorescein) assay. Journal of Agricultural and Food Chemistry, 52(1), 48–54.

    Article  Google Scholar 

  34. Romay, C., & González, R. (2000). Phycocyanin is an antioxidant protector of human erythrocytes against lysis by peroxyl radicals. The Journal Of Pharmacy And Pharmacology, 52(4), 367–368.

    Article  CAS  Google Scholar 

  35. Jun, C., Xue, Y., Liu, R., & Wang, M. (2011). Study on the toxic interaction of methanol, ethanol and propanol against the bovine hemoglobin (BHb) on molecular level Spectrochimica acta. Part A, Molecular And Biomolecular Spectroscopy, 79(5), 1406–10.

    Article  Google Scholar 

  36. Terashima, M., Kakuno, Y., Kitano, N., Matsuoka, C., Murase, M., Togo, N., Watanabe, R., & Matsumura, S. (2012). Antioxidant activity of flavonoids evaluated with myoglobin method. Plant cell reports, 31(2), 291–298.

    Article  CAS  Google Scholar 

  37. Santucci, R., Sinibaldi, F., Cozza, P., Polticelli, F., & Fiorucci, L. (2019). Cytochrome c: An extreme multifunctional protein with a key role in cell fate. International Journal Of Biological Macromolecules, 136, 1237–1246.

    Article  CAS  Google Scholar 

  38. Martínez-Pérez, R. B., Díaz-Tenorio, L. M., Leyva Soto, L. A., Gortáres-Moroyoqui, P., García-Rico, L., & Rodríguez, J. A. (2020). Characterization of cannonball jellyfish (Stomolophus sp 2) blue protein: A pH-stable pigment. Environmental Science And Pollution Research International, 27(23), 28597–28606.

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (31900038, 31771899), the Natural Science Foundation of Hunan Province, China (2021JJ30029), Independent Exploration and Innovation project for postgraduate of Hunan Province (CX20200297), and Independent Exploration and Innovation project for postgraduate of Central South University (2020zzts422, 2020zzts424).

Author information

Authors and Affiliations

Authors

Contributions

CongLing Liu: writing—original draft preparation, conceptualization, methodology. Zhur Olena: investigation. XiaoTao Yan: visualization, software. TingTing Yin: data curation, methodology. HaiLian Rao: validation. Xun Xiao: software. MingYang Zhou: funding acquisition. CuiLing Wu: conceptualization, funding acquisition. HaiLun He: writing—review and editing, funding acquisition, resources, supervision.

Corresponding authors

Correspondence to CuiLing Wu or HaiLun He.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2641 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Zhur, O., Yan, X. et al. A Method for Detecting Antioxidant Activity of Antioxidants by Utilizing Oxidative Damage of Pigment Protein. Appl Biochem Biotechnol 194, 5522–5536 (2022). https://doi.org/10.1007/s12010-022-04058-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04058-5

Keywords

Navigation