Skip to main content
Log in

Probiotic and Functional Characterization of Pediococcus acidilactici Isolated from Bhaati jaanr, Traditional Fermented Rice Porridge

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Traditional fermented foods are the ideal source of novel probiotic isolates which are known to have significant therapeutic benefits and play a vital role as bioprotective agents. Bhaati jaanr is an ethnic fermented rice beverage popularly consumed in sub-Himalayan regions. The strain UAMS was isolated from Bhaati jaanr based on high butyrate production and evaluated for the potential probiotic characteristics. MALDI-TOF MS and 16 s rRNA gene sequencing revealed the identity of strains as Pediococcus acidilactici. The isolated strain exhibited high tolerance to gastric and bile stress, autoaggregation, hydrophobicity, and adherence to colon cells. Antibiotic susceptibility testing results showed the resistance of the isolated strain toward tested common antibiotics and the pathogenic determinants were absent in PCR-based detection. Moreover, the organism was able to inhibit the growth of Listeria, Salmonella, Staphylococcus, and Enterococcus species. The isolate was found to be a high butyrate producer along with other short-chain fatty acids and exhibited an anti-proliferative effect against colon cancer cells HT29 and SW480. Therefore, our study represents Pediococcus acidilactici UAMS as a potent putative probiotic with bioprotective abilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The 16S rRNA gene sequence of the strain UAMS is available in NCBI GenBank with accession no MT178398. Supplementary data files are attached with the manuscript.

References

  1. Abbasiliasi, S., Tan, J. S., Bashokouh, F., Ibrahim, T. A. T., Mustafa, S., Vakhshiteh, F., Sivasamboo, S., & Ariff, A. B. (2017). In vitro assessment of Pediococcus acidilactici Kp10 for its potential use in the food industry. BMC Microbiology, 17(1), 1–11.

    Article  Google Scholar 

  2. Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Canani, R. B., Flint, H. J., & Salminen, S. (2014). The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology, 11(8), 506–514.

    Article  Google Scholar 

  3. Hasan, N., & Yang, H. J. P. (2019). Factors affecting the composition of the gut microbiota, and its modulation. PeerJ, 7(e7502), 7.

    Google Scholar 

  4. Rowland, I. R. (2009). The role of the gastrointestinal microbiota in colorectal cancer. Current Pharmaceutical Design, 15(13), 1524–1527.

    Article  PubMed  CAS  Google Scholar 

  5. De Marco, S., Sichetti, M., Muradyan, D., Piccioni, M., Traina, G., Pagiotti, R., & Pietrella, D. (2018). Probiotic cell-free supernatants exhibited anti-inflammatory and antioxidant activity on human gut epithelial cells and macrophages stimulated with LPS. Evidence-based Complementary and Alternative Medicine: ECAM, 2018, 1756308.

    Article  PubMed  Google Scholar 

  6. Hugenholtz, J., Sybesma, W., Groot, M. N., Wisselink, W., Ladero, V., Burgess, K., van Sinderen, D., Piard, J. C., Eggink, G., Smid, E. J., Savoy, G., Sesma, F., Jansen, T., Hols, P., & Kleerebezem, M. (2002). Metabolic engineering of lactic acid bacteria for the production of nutraceuticals. Antonie van Leeuwenhoek, 82(1–4), 217–235.

    Article  PubMed  CAS  Google Scholar 

  7. Srikham, K., Daengprok, W., Niamsup, P., & Thirabunyanon, M. (2021). Characterization of Streptococcus salivarius as new probiotics derived from human breast milk and their potential on proliferative inhibition of liver and breast cancer cells and antioxidant activity. Frontiers in Microbiology, 12, 797445.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kahouli, I., Malhotra, M., Alaoui-Jamali, M., & Prakash, S. (2015). In-vitro characterization of the anti-cancer activity of the probiotic bacterium Lactobacillus fermentum NCIMB 5221 and potential against colorectal cancer. Journal of Cancer Science and Therapy, 7(7), 224–235.

    CAS  Google Scholar 

  9. Harrigan, W. (1998). Laboratory methods in food microbiology. San Diego: Academic Press.

  10. Borges, S., Costa, P., Silva, J., & Teixeira, P. (2013). Effects of processing and storage on Pediococcus pentosaceus SB83 in vaginal formulations: lyophilized powder and tablets. BioMed Research International, 2013, 680767.

  11. Zommiti, M., Bouffartigues, E., Maillot, O., Barreau, M., Szunerits, S., Sebei, K., ... & Ferchichi, M. (2018). In vitro assessment of the probiotic properties and bacteriocinogenic potential of Pediococcus pentosaceus MZF16 isolated from artisanal Tunisian meat “Dried Ossban”. Frontiers in Microbiology, 9, 2607.

  12. Conway, P. L., Gorbach, S. L., & Goldin, B. R. (1987). Survival of lactic acid bacteria in the human stomach and adhesion to intestinal cells. Journal of Dairy Science, 70(1), 1–12.

    Article  PubMed  CAS  Google Scholar 

  13. Chateau, N., Deschamps, A. M., & Sassi, A. H. (1994). Heterogeneity of bile salts resistance in the Lactobacillus isolates of a probiotic consortium. Letters in Applied Microbiology, 18(1), 42–44.

    Article  Google Scholar 

  14. Collado, M. C., Meriluoto, J., & Salminen, S. (2008). Adhesion and aggregation properties of probiotic and pathogen strains. European Food Research and Technology, 226(5), 1065–1073.

    Article  CAS  Google Scholar 

  15. Doyle, R. J., & Rosenberg, M. (1995). Measurement of microbial adhesion to hydrophobic substrata. Methods in enzymology, 253, 542–550. Elsevier.

    Article  PubMed  CAS  Google Scholar 

  16. Gopal, P. K., Prasad, J., Smart, J., & Gill, H. S. (2001). In vitro adherence properties of Lactobacillus rhamnosus DR20 and Bifidobacterium lactis DR10 strains and their antagonistic activity against an enterotoxigenic Escherichia coli. International Journal of Food Microbiology, 67(3), 207–216.

    Article  PubMed  CAS  Google Scholar 

  17. Wayne, P. (2014). CLSI performance standard of antimicrobial susceptibility testing: Twenty-fourth international supplements. CLSI Document M100–S24. Clinical and Laboratory Standard Institute, 34(1), 50–106.

    Google Scholar 

  18. Vlková, E., Rada, V., Popelářová, P., Trojanová, I., & Killer, J. (2006). Antimicrobial susceptibility of bifidobacteria isolated from gastrointestinal tract of calves. Livestock Science, 105(1–3), 253–259.

    Article  Google Scholar 

  19. Eaton, T. J., & Gasson, M. J. (2001). Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. Applied and Environmental Microbiology, 67(4), 1628–1635.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Zhang, W., & Liang, X. (2019). Headspace gas chromatography-mass spectrometry for volatile components analysis in Ipomoea cairica (L.) sweet leaves: Natural deep eutectic solvents as green extraction and dilution matrix. Foods, 8(6), 205.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Schillinger, U. J. A., Microbiology e. (1989). Antibacterial activity of Lactobacillus sake isolated from meat. Applied and Environmental Microbiology, 55(8), 1901–1906.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Analytical Biochemistry, 269(2), 337–341.

    Article  PubMed  CAS  Google Scholar 

  23. Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1–2), 55–63.

    Article  PubMed  CAS  Google Scholar 

  24. Doi, K., Nishizaki, Y., Fujino, Y., Ohshima, T., Ohmomo, S., & Ogata, S. (2009). Pediococcus lolii sp. nov., isolated from ryegrass silage. International Journal of Systematic and Evolutionary Microbiology, 59(5), 1007–1010.

    Article  PubMed  CAS  Google Scholar 

  25. Abbasiliasi, S., Tan, J. S., Ibrahim, T. A. T., Ramanan, R. N., Vakhshiteh, F., Mustafa, S., Ling, T. C., Rahim, R. A., & Ariff, A. B. (2012). Isolation of Pediococcus acidilactici Kp10 with ability to secrete bacteriocin-like inhibitory substance from milk products for applications in food industry. BMC Microbiology, 12(1), 1–12.

    Article  Google Scholar 

  26. Papagianni, M. (2012). Metabolic engineering of lactic acid bacteria for the production of industrially important compounds. Computational and Structural Biotechnology Journal, 3(4), e201210003.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Okonechnikov, K., Golosova, O., Fursov, M., UGENE team. (2012). Unipro UGENE: A unified bioinformatics toolkit. Bioinformatics (Oxford, England), 28(8), 1166–1167.

    Article  PubMed  CAS  Google Scholar 

  28. Chen, J., Zhao, K. N., & Vitetta, L. (2019). Effects of intestinal microbial-elaborated butyrate on oncogenic signaling pathways. Nutrients, 11(5), 1026.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Talwalkar, A., & Kailasapathy, K. (2003). Metabolic and biochemical responses of probiotic bacteria to oxygen. Journal of Dairy Science, 86(8), 2537–2546.

    Article  PubMed  CAS  Google Scholar 

  30. Barbosa, J., Borges, S., & Teixeira, P. (2015). Pediococcus acidilactici as a potential probiotic to be used in food industry. International Journal of Food Science & Technology., 50, 1151–1157.

    Article  CAS  Google Scholar 

  31. Noohi, N., Ebrahimipour, G., Rohani, M., Talebi, M., & Pourshafie, M. (2016). Evaluation of potential probiotic characteristics and antibacterial effects of strains of Pediococcus species isolated from broiler chickens. British Poultry Science., 57(3), 317–323.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the University of Potential Excellence (UPE)-UGC initiative, Anna University for providing the MALDI-TOF MS facility. The authors thankfully acknowledge the support of the Department of Marine Biotechnology, National Institute of Ocean Technology, Velachery-Tambaram Main Road, Narayanapuram, Palikaranai, Chennai, Tamil Nadu, India, 600100, for GC-MS analysis of culture supernatants. The authors are thankful to the University Grants Commission (UGC), Government of India for the fellowship and contingency (F/201516/NFO201517OBCUTT30760) provided to carry out the project.

Funding

This study was supported by Anna University.

Author information

Authors and Affiliations

Authors

Contributions

Sandeep Jaiswal—funding acquisition, experimentation, formal analysis, writing, and revision of the manuscript.

Diamond Jain—experimentation, data analysis, editing of manuscript.

Satya Narayan Pradhan—conceptualization, formal analysis, editing, and revising the manuscript.

Magesh Peter Dhassiah Peter—GCMS experimentation, data interpretation.

Usha Antony—conceptualization, data curation, formal analysis, revision of the manuscript, approval of the manuscript for publication.

Corresponding author

Correspondence to Usha Antony.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1061 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaiswal, S., Pradhan, S.N., Jain, D. et al. Probiotic and Functional Characterization of Pediococcus acidilactici Isolated from Bhaati jaanr, Traditional Fermented Rice Porridge. Appl Biochem Biotechnol 194, 5734–5747 (2022). https://doi.org/10.1007/s12010-022-04041-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04041-0

Keywords

Navigation