Skip to main content
Log in

Citrus Essential Oils: a Treasure Trove of Antibiofilm Agent

  • Review Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Biofilms are groups of adherent cell communities that cohere to the biotic and abiotic surfaces with the help of extracellular polymeric substances (EPS). EPS allow bacteria to form a biofilm that facilitates their binding to biotic and abiotic surfaces and provides resistance to the host immune responses and to antibiotics. There are efforts that have led to the development of natural compounds that can overcome this biofilm-mediated resistance. Essential oils (EOs) are a unique mixture of compounds that plays a key role in preventing the development of biofilm. The present overview focusses on the role of various types of citrus essential oils in acting against the biofilm, and the antibiofilm properties of natural compounds that may show an avenue to treat the multidrug-resistant bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R., & LappinScott, H. M. (1995). Microbial biofilms. Annual Review of Microbiology, 49, 711–745.

    Article  CAS  PubMed  Google Scholar 

  2. Dula, S., Ajayeoba, T. A., & Ijabadeniyi, O. A. (2021). Bacterial biofilm formation on stainless steel in the food processing environment and its health implications. Folia Microbiologica., 66, 293–302.

    Article  CAS  PubMed  Google Scholar 

  3. Lahiri, D., Nag, M., Dutta, B., Dey, S., Mukherjee, D., Joshi, S.J. and Ray, R. R. (2021). Antibiofilm and anti-quorum sensing activities of eugenol and linalool from Ocimum tenuiflorum against Pseudomonas aeruginosa biofilm. Journal of Applied Microbiology. Accepted Author Manuscript. In press. https://doi.org/10.1111/jam.15171

  4. Bryers, J. D. (2008). Medical biofilms. Biotechnology and Bioengineering, 100, 1–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cavalheiro M., Teixeira M. C. ( 2018) Candida biofilms: threats, challenges, and promising strategies. Front Med (Lausanne) 5:28. https://doi.org/10.3389/fmed.2018.00028

  6. Beauvais A., Latgé J. P. (2015) Aspergillus biofilm in vitro and in vivo. Microbiol Spectr 3(4). https://doi.org/10.1128/microbiolspec

  7. Fanning, S., & Mitchell, A. P. (2012). Fungal biofilms. PLoS Pathogens, 8(4), e1002585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Oppenheimer-Shaanan, Y., Steinberg, N., & Kolodkin-Gal, I. (2013). Small molecules are natural triggers for the disassembly of biofilms. Trends in Microbiology, 21, 594–601.

    Article  CAS  PubMed  Google Scholar 

  9. Nag, M., Lahiri, D., Ghosh, A., Das, D., & Ray, R. R. (2021). Quorum sensing. In R. R. Ray, M. Nag, & D. Lahiri (Eds.), Biofilm-mediated diseases: Causes and controls. Springer.

    Google Scholar 

  10. Bassler, B. L., Wright, M., & Silverman, M. R. (1994). Multiple signaling systems controlling expression of luminescence in Vibrio harveyi: Sequence and function of genes encoding a second sensory pathway. Molecular Microbiology, 13, 273–286.

    Article  CAS  PubMed  Google Scholar 

  11. Lahiri, D., Nag, M., Sheikh, H. I., Sarkar, T., Edinur, H. A., Pati, S., & Ray, R. R. (2021). Microbiologically-synthesized nanoparticles and their role in silencing the biofilm signaling cascade. Frontiers in Microbiology, 12, 636588. https://doi.org/10.3389/fmicb.2021.636588

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dutta, B., Lahiri, D., Nag, M., Mukherjee, D., & Ray, R. R. (2021). Introduction to bacterial biofilm and acute infections. In R. R. Ray, M. Nag, & D. Lahiri (Eds.), Biofilm-mediated diseases: Causes and controls. Springer.

    Google Scholar 

  13. Lahiri, D., Dash, S., Dutta, R., et al. (2019). Elucidating the effect of anti-biofilm activity of bioactive compounds extracted from plants. Journal of Biosciences, 44, 52.

    Article  PubMed  Google Scholar 

  14. Alves, S., Duarte, A., & Sousa, S. (2016). Study of the major essential oil compounds of Coriandrum sativum against Acinetobacter baumannii and the effect of linalool on adhesion, biofilms and quorum sensing. Biofouling, 32, 155–165.

    Article  CAS  PubMed  Google Scholar 

  15. Liu, Q., Niu, H., & Zhang, W. (2015). Synergy among thymol, eugenol, berberine, cinnamaldehyde and streptomycin against planktonic and biofilm-associated food-borne pathogens. Letters in Applied Microbiology, 60, 421–430.

    Article  CAS  PubMed  Google Scholar 

  16. Sarkar, T., Salauddin, M., Roy, A., Sharma, N., Sharma, A., Yadav, S., Jha, V., Rebezov, M., Khayrullin, M., Thiruvengadam, M., Chung, I.-M., Shariati, M. A., & Simal-Gandara, J. (2022). Minor tropical fruits as a potential source of bioactive and functional foods. Critical Reviews in Food Science and Nutrition. https://doi.org/10.1080/10408398.2022.2033953

    Article  PubMed  Google Scholar 

  17. Mahato, N., Sharma, K., Koteswararao, R., Sinha, M., Baral, E., & Cho, M. H. (2019). Citrus essential oils: Extraction, authentication and application in food preservation. Critical Reviews in Food Science and Nutrition 59(4), 611–625. https://doi.org/10.1080/10408398.2017.1384716

  18. Palazzolo, E., Laudicina, V. A., & Germanà, M. A. (2013). Current and potential use of citrus essential oils. Current Organic Chemistry, 17, 3042–3049.

    Article  CAS  Google Scholar 

  19. Sarkar, T., Salauddin, M., & Chakraborty, R. (2020). In-depth pharmacological and nutritional properties of bael (Aegle marmelos): A critical review. Journal of Agriculture and Food Research, 2, 100081. https://doi.org/10.1016/j.jafr.2020.100081

    Article  Google Scholar 

  20. Jing, L., Lei, Z., & Li, L. (2014). Antifungal activity of citrus essential oils. Journal of Agricultural and Food Chemistry, 62, 3011–3033.

    Article  CAS  PubMed  Google Scholar 

  21. Bousbia, N., Vian, M. A., Ferhat, M. A., Meklati, B. Y., & Chemat, F. (2009). A new process for extraction of essential oil from Citrus peels: Microwave hydrodiffusion and gravity. Journal of Food Engineering, 90(3), 409–413.

    Article  Google Scholar 

  22. Khajeh, M., Moghaddam, Z. S., Bohlooli, M., & Khajeh, A. (2015). Modeling of dispersive liquid–liquid microextraction for determination of essential oil from Borago officinalis L. By using combination of artificial neural network and genetic algorithm method. Journal of Chromatographic Science, 53(10), 1801–1807.

    Article  CAS  PubMed  Google Scholar 

  23. Bonaccorsi, I., Sciarrone, D., Schipilliti, L., Dugo, P., Mondello, L., & Dugo, G. (2012). Multidimensional enantio gas chromtography/mass spectrometry and gas chromatography-combustion-isotopic ratio mass spectrometry for the authenticity assessment of lime essential oils C. aurantifolia Swingle and C. latifolia Tanaka. Journal of Chromatography A, 1226, 87–95.

    Article  CAS  PubMed  Google Scholar 

  24. Kusuma, H. S., Putra, A. F. P., & Mahfud, M. (2016). Comparison of two isolation methods for essential oils from orange peel Citrus auranticum L. as a growth promoter for fish: Microwave steam distillation and conventional steam distillation. Journal of Aquaculture Research and Development, 7(2), 409.

    Google Scholar 

  25. Figueiredo, A. C., Barroso, J. G., Pedro, L. G., Salgueiro, L., Miguel, M. G., & Faleiro, M. L. (2008). Portuguese thymbra and thymus species volatiles: Chemical composition and biological activities. Current Pharmaceutical Design, 14, 3120–3140.

    Article  CAS  PubMed  Google Scholar 

  26. Tranchida, P. Q., Bonaccorsi, I., Dugo, P., Mondello, L., & Dugo, G. (2012). Analysis of citrus essential oils: State of the art and future perspectives A review. Flavour and Fragrance Journal, 27, 98–123. https://doi.org/10.1002/ffj.2089

    Article  CAS  Google Scholar 

  27. Sun, Y. W., Chen, S. J., Zhang, C., Liu, Y., Ma, L., & Zhang, X. Y. (2018). Effects of sub-minimum inhibitory concentrations of lemon essential oil on the acid tolerance and biofilm formation of Streptococcus mutants. Archives of Oral Biology, 87, 235–241.

    Article  CAS  PubMed  Google Scholar 

  28. Selim, S. A., Adam, M. E., Hassan, S. M., & Albalawi, A. R. (2014). Chemical composition, antimicrobial and antibiofilm activity of the essential oil and methanol extract of the Mediterranean cypress (Cupressus sempervirens L.). BMC Complementary and Alternative Medicine, 14, 179.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Zygadlo, J. A., M. P. Zunino, R. P. Pizzolitto, C. Merlo, A. Omarini, J. S. Dambolena. (2017). Antibacterial and anti-biofilm activities of essential oils and their components including modes of action. In M. Rai, S. Zacchino, & M. Derita (Eds.), Essential oils and nanotechnology for treatment of microbial diseases (pp. 112–39). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7598638/

  30. Luciardi, M. C., Blázquez, M. A., Alberto, M. R., Cartagena, E., & Arena, M. E. (2020). Grapefruit essential oils inhibit quorum sensing of Pseudomonas aeruginosa. Food Science and Technology International, 26(3), 231–241.

    Article  CAS  PubMed  Google Scholar 

  31. Oliveira, S. A. C., Zambrana, J. R. M., Iorio, F. B. R., Pereira, C. A., & Jorge, A. O. C. (2014). The antimicrobial effects of Citrus limonum and Citrus aurantium essential oils on multi-species biofilms. Brazilian Oral Research, 28, 22–27.

    Article  PubMed  Google Scholar 

  32. Luciardi, M. C., Blázquez, M. A., Alberto, M. R., Cartagena, E., Arena, M. E. (2021). Lemon oils attenuate the pathogenicity of Pseudomonas aeruginosa by Quorum Sensing inhibition. Molecules. https://doi.org/10.3390/molecules26102863

  33. Budri, P. E., Silva, N. C., Bonsaglia, E. C., Fernandes Junior, A., Araújo Junior, J. P., Doyama, J. T., Gonçalves, J. L., Santos, M. V., Fitzgerald-Hughes, D., & Rall, V. L. (2015). Effect of essential oils of Syzygium aromaticum and Cinnamomum zeylanicum and their major components on biofilm production in Staphylococcus aureus strains isolated from milk of cows with mastitis. Journal of Dairy Science, 98(9), 5899–904.

    Article  CAS  PubMed  Google Scholar 

  34. Kerekes, E. B., De ak, E., Tako, M., Tserennadmid, R., Petkovits, T., Vagvolgyi, C., & Krisch, J. (2013). Anti-biofilm forming and anti-quorum sensing activity of selected essential oils and their main components on food-related micro-organisms. Journal of Applied Microbiology, 115(4), 933–42.

    Article  CAS  PubMed  Google Scholar 

  35. dos Santos Rodrigues, J. B., de Carvalho, R. J., de Souza, N. T., de Sousa Oliveira, K., Franco, O. L., Schaffner, D., de Souza, E. L., & Magnani, M. (2017). Effects of oregano essential oil and carvacrol on biofilms of Staphylococcus aureus from food-contact surfaces. Food Control, 73, 1237–1246.

    Article  CAS  Google Scholar 

  36. Kim, Y. G., Lee, J. H., Kim, S. I., Baek, K. H., & Lee, J. (2015). Cinnamon bark oil and its components inhibit biofilm formation and toxin production. International Journal of Food Microbiology, 195, 30–39.

    Article  CAS  PubMed  Google Scholar 

  37. Kačániová, M., Terentjeva, M., Galovičová, L., Ivanišová, E., Štefániková, J., Valková, V., & Vukovic, N. (2020). Biological activity and antibiofilm molecular profile of Citrus aurantium essential oil and its application in a food model. Molecules, 25(17), 3956.

    Article  PubMed Central  CAS  Google Scholar 

  38. Avcioglu, N. H., Sahal, G., & Bilkay, I. S. (2016). Antibiofilm effects of Citrus limonum and Zingiber officinale oils on biofilm formation of Klebsiella ornithinolytica, Klebsiella oxytoca and Klebsiella terrigena species. African Journal of Traditional, Complementary and Alternative Medicines, 13, 61–67.

    Article  Google Scholar 

  39. Zhang, Y., Liu, X., Wang, Y., Jiang, P., & Quek, S. (2016). Antibacterial activity and mechanism of cinnamon essential oil against Escherichia coli and Staphylococcus aureus. Food Control, 59, 282–289.

    Article  CAS  Google Scholar 

  40. Wang, F., Wei, F., Song, C., Jiang, B., Tian, S., Yi, J., Yu, C., Song, Z., Sun, L., Bao, Y., et al. (2017). Dodartia orientalis L. essential oil exerts antibacterial activity by mechanisms of disrupting cell structure and resisting biofilm. Industrial Crops and Products, 109, 358–366.

    Article  CAS  Google Scholar 

  41. Lopez-Romero, J. C., Gonzalez-Rıos, H., Borges, A., & Simões, M. (2015). Antibacterial effects and mode of action of selected essential oils components against Escherichia coli and Staphylococcus aureus. Evidence-based complementary and alternative medicine: eCAM, 2015, 795435.

    Article  Google Scholar 

  42. De Kerchove, A. J., & Elimelech, M. (2008). Bacterial swimming motility enhances cell deposition and surface coverage. Environmental Science & Technology, 42(12), 4371–4377. https://doi.org/10.1021/es703028u

    Article  CAS  Google Scholar 

  43. Vicario, J. C., Dardanelli, M. S., & Giordano, W. (2015). Swimming and swarming motility properties of peanut-nodulating rhizobia. FEMS Microbiology Letters, 362(2), 1–6. https://doi.org/10.1093/femsle/fnu038

    Article  CAS  PubMed  Google Scholar 

  44. D’Amato, S., Serio, A., Chaves, L. C., & Paparella, A. (2018). Hydrosols: Biological activity and potential as antimicrobials for food applications. Food Control, 86, 126–137.

    Article  CAS  Google Scholar 

  45. Myszka, K., Schmidt, M. T., Majcher, M., Juzwa, W., Olkowicz, M., & Czaczyk, K. (2016). Inhibition of quorum sensing-related biofilm of Pseudomonas fluorescens KM121 by Thymus vulgare essential oil and its major bioactive compounds. International Biodeterioration & Biodegradation, 114, 252–259.

    Article  CAS  Google Scholar 

  46. Heath, R. J., & Rock, C. O. (2004). Fatty acid biosynthesis as a target for novel antibacterials. Current Opinion in Investigational Drugs, 5, 146–153.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Burt, S. A., & Reinders, R. D. (2003). Antibacterial activity of selected plant essential oils against Escherichia coli O157:H7. Letters in Applied Microbiology, 36, 162–167.

    Article  CAS  PubMed  Google Scholar 

  48. Heath, R. J., Jackowski, S., & Rock, C. O. (2002). Fatty acid and phospholipid metabolism in prokaryotes. In J. E. Vance & D. E. Vance (Eds.), Biochemistry of lipids, lipoproteins and membranes (4th ed.). Elsevier.

    Google Scholar 

  49. Russell, N. J. (1997). Psychrophilic bacteria: Molecular adaptations of membrane lipids. Comparative Biochemistry and Physiology, 118, 489–493.

    Article  CAS  PubMed  Google Scholar 

  50. Domadia, P., Swarup, S., Bhunia, A., Sivaraman, J., & Dasgupta, D. (2007). Inhibition of bacterial cell division protein FtsZ by cinnamaldehyde. Biochemical Pharmacology, 74, 831–840.

    Article  CAS  PubMed  Google Scholar 

  51. Di Pasqua, R., Mamone, G., Ferranti, P., Ercolini, D., & Mauriello, G. (2010). Changes in the proteome of Salmonella enterica serovar Thompson as stress adaptation to sublethal concentrations of thymol. Proteomics, 10, 1040–1049.

    Article  PubMed  CAS  Google Scholar 

  52. Xu, H. H., Trawick, J. D., Haselbeck, R. J., Forsyth, R., Yamamoto, R. T., Archer, R., Patterson, J., Allen, M., Froelich, J. M., Taylor, I., et al. (2010). Staphylococcus aureus target array: Comprehensive differential essential gene expression as a mechanistic tool to profile antibacterials. Antimicrobial Agents and Chemotherapy, 54, 3659–3670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Carneiro, S., Villas-Bôas, S. G., Ferreira, E. C., & Rocha, I. (2011). Metabolic footprint analysis of recombinant Escherichia coli strains during fed-batch fermentations. Molecular BioSystems, 7, 899–910.

    Article  CAS  PubMed  Google Scholar 

  54. Porfírio, E. M., Melo, H. M., Pereira, A. M. G., Cavalcante, T. T. A., Gomes, G. A., de Carvalho, M. G., et al. (2017). In vitro antibacterial and antibiofilm activity of Lippia alba essential oil, citral, and carvone against Staphylococcus aureus. The Scientific World Journal, 2017, 1–7. https://doi.org/10.1155/2017/4962707

    Article  CAS  Google Scholar 

  55. Jaiswal, M., Dudhe, R., & Sharma, P. K. (2015). Nanoemulsion: An advanced mode of drug delivery system. 3 Biotech, 5(2), 123–127.

    Article  PubMed  Google Scholar 

  56. Lou, Z., Chen, J., Yu, F., Wang, H., Kou, X., Ma, C., & Zhu, S. (2017). The antioxidant, antibacterial, antibiofilm activity of essential oil from Citrus medica L. var. sarcodactylis and its nanoemulsion. LWT, 80, 371–377.

    Article  CAS  Google Scholar 

  57. El Asbahani, A., Miladi, K., Badri, W., Sala, M., Aït Addi, E. H., Casabianca, H., El Mousadik, A., Hartmann, D., Jilale, A., Renaud, F. N., Elaissari, A. (2015). International Journal of Pharmaceutics, 483(1–2), 220–43.

  58. Ambrosio, C. M. S., Alvim, I. D., Contreras Castillo, C. J., & Da Gloria, E. M. (2020). Microencapsulation enhances the in vitro antibacterial activity of a citrus essential oil. Journal of Essential Oil Bearing Plants, 23(5), 985–997.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally.

Corresponding authors

Correspondence to Sanket Joshi or Rina Rani Ray.

Ethics declarations

Consent to Participate

All authors has their consent to participate.

Consent for Publication

All authors has their consent to publish their work.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lahiri, D., Nag, M., Dey, A. et al. Citrus Essential Oils: a Treasure Trove of Antibiofilm Agent. Appl Biochem Biotechnol 194, 4625–4638 (2022). https://doi.org/10.1007/s12010-022-04033-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04033-0

Keywords

Navigation