Skip to main content
Log in

Immobilization for Lipase: Enhanced Activity and Stability by Flexible Combination and Solid Support

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, an enhanced activity and stability method for immobilizing porcine pancreatic lipase (PPL) was developed based on ZIF-8 encapsulated supramolecular-modified gold nanoparticle complexes (pSC4-AuNPs@ZIF-8). Supramolecular calix[4]arene (pSC4) can recognize the amino group of PPL through non-covalent force, and this flexible binding method protected the structure of PPL during the immobilization process. Due to the hydrophilic of pSC4-AuNPs and hydrophobic of ZIF-8, PPL can maintain a “lid open” conformation, which can enhance the stability of PPL structure and reduce PPL activity loss. ZIF-8 was used to immobilize PPL to avoid the difficult recovery of free PPL. Compared with the native form of PPL, it exhibited 70.6% maintained activity with terrific pH and temperature stability, and had good performance in thermal stability, time stability, and reusability. In addition, three immobilized PPL methods were designed to further clarify the influence of synthetic methods and additives on the activity and stability of PPL. Importantly, the loading rate of pSC4-AuNPs@ZIF-8@PPL was up to 51.2% among these immobilized PPL systems. Therefore, pSC4-AuNPs@ZIF-8 may serve as a versatile and promising immobilization system for enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Conrado, R. J., Varner, J. D., & Delisa, M. P. (2008). Engineering the spatial organization of metabolic enzymes: Mimicking nature’s synergy. Current Opinion in Biotechnology, 19(5), 492–499.

    Article  PubMed  CAS  Google Scholar 

  2. Lian, X., Chen, Y. P., Liu, T. F., & Zhou, H. C. (2016). Coupling two enzymes into a tandem nanoreactor utilizing a hierarchically structured MOF. Chemical Science, 7, 6969–6973.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Sirisha, V. L., Jain, A., & Jain, A. (2016). Enzyme immobilization: An overview on methods, support material, and applications of immobilized enzymes. Advances in Food & Nutrition Research, 79, 179–211.

    Article  CAS  Google Scholar 

  4. Cai, X., Zhang, M., Wei, W., Zhang, Y., & Wang, Z. (2020). The Immobilization of Candida antarctica lipase B by ZIF-8 encapsulation and macroporous resin adsorption: Preparation and characterizations. Biotechnology Letters, 42(2), 269–276.

    Article  PubMed  CAS  Google Scholar 

  5. Magner, E. (2013). Immobilization of enzymes on mesoporous silicate materials. Chemical Society Reviews, 42(15), 6213–6222.

    Article  PubMed  CAS  Google Scholar 

  6. Wang, J., Zhao, G., & Yu, F. (2016). Facile preparation of Fe3O4@MOF core-shell microspheres for lipase immobilization. Journal of the Taiwan Institute of Chemical Engineers, 69, 139–145.

    Article  CAS  Google Scholar 

  7. Ozyilmaz, E., Ascioglu, S., & Yilmaz, M. (2021). Calix[4]arene tetracarboxylic acid-treated lipase immobilized onto metal-organic framework: Biocatalyst for ester hydrolysis and kinetic resolution. International Journal of Biological Macromolecules, 175, 79–86.

    Article  PubMed  CAS  Google Scholar 

  8. Zhang, P., Chen, J., Sun, B., Sun, C., Xu, W., & Tang, K. (2021). Enhancement of the catalytic efficiency of Candida antarctica lipase A in enantioselective hydrolysis through immobilization onto a hydrophobic MOF support. Biochemical Engineering Journal, 173, 108066.

    Article  CAS  Google Scholar 

  9. Feng, Y., Xu, Y., Liu, S., Wu, D., Su, Z., Chen, G., Liu, J., & Li, G. (2022). Recent advances in enzyme immobilization based on novel porous framework materials and its applications in biosensing. Coordination Chemistry Reviews, 459, 214414.

    Article  CAS  Google Scholar 

  10. Mehta, J., Bhardwaj, N., Bhardwaj, S. K., Kim, K. H., & Deep, A. (2016). Recent advances in enzyme immobilization techniques: Metal-organic frameworks as novel substrates. Coordination Chemistry Reviews, 322(1), 30–40.

    Article  CAS  Google Scholar 

  11. Li, Z., Xia, H., Li, S., Pang, J., Zhu, W., & Jiang, Y. (2017). In situ hybridization of enzymes and their metal–organic framework analogues with enhanced activity and stability by biomimetic mineralisation. Nanoscale, 9(40), 15298–15302.

    Article  PubMed  CAS  Google Scholar 

  12. Carucci, C., Bruen, L., Gascón, V., Paradisi, F., & Magner, E. (2018). Significant enhancement of structural stability of the hyperhalophilic ADH from Haloferax volcanii via entrapment on metal organic framework support. Langmuir, 34(28), 8274–8280.

    Article  PubMed  CAS  Google Scholar 

  13. Vertegel, A. A., Siegel, R. W., & Dordick, J. S. (2004). Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir, 20(16), 6800–6807.

    Article  PubMed  CAS  Google Scholar 

  14. Bourkaib, M. C., Guiavarc’h, Y., Chevalot, I., Delaunay, S., Gleize, J., Ghanbaja, J., Valsaque, F., Berrada, N., Desforges, A., & Vigolo, B. (2020). Non-covalent and covalent immobilization of Candida antarctica lipase B on chemically modified multiwalled carbon nanotubes for a green acylation process in supercritical CO2. Catalysis Today, 348, 26–36.

    Article  CAS  Google Scholar 

  15. Mei, S., Shi, J., Zhang, S., Wang, Y., Wu, Y., Jiang, Z., & Wu, H. (2019). Nanoporous phyllosilicate assemblies for enzyme immobilization. Acs Applied Bio Materials, 2(2), 777–786.

    Article  PubMed  CAS  Google Scholar 

  16. Wang, J., Jensen, U. B., Jensen, G. V., Shipovskov, S., Balakrishnan, V. S., Otzen, D., Pedersen, J. S., Besenbacher, F., & Sutherland, D. S. (2011). Soft interactions at nanoparticles alter protein function and conformation in a size dependent manner. Nano Letters, 11, 4985–4991.

    Article  PubMed  CAS  Google Scholar 

  17. Roach, P., Farrar, D., & Perry, C. C. (2005). Interpretation of protein adsorption: Surface-induced conformational changes. Journal of the American Chemical Society, 127, 8168–8173.

    Article  PubMed  CAS  Google Scholar 

  18. Gopinath, S., & Sugunan, S. (2004). Leaching studies over immobilized a-amylase importance of the nature of enzyme attachment. Reaction Kinetics and Catalysis Letters, 83(1), 79–83.

    Article  CAS  Google Scholar 

  19. Song, J., He, W., Shen, H., Zhou, Z., Li, M., Su, P., & Yang, Y. (2019). Construction of multiple enzyme metal–organic frameworks biocatalyst via DNA scaffold: A promising strategy for enzyme encapsulation. Chemical Engineering Journal, 363, 174–182.

    Article  CAS  Google Scholar 

  20. Wang, Y., Jonkute, R., Lindmark, H., Keighron, J. D., & Cans, A.-S. (2019). Molecular crowding and a minimal footprint at a gold nanoparticle support stabilize glucose oxidase and boost its activity. Langmuir, 36(1), 37–46.

    Article  Google Scholar 

  21. Yang, Q., Wang, B., Zhang, Z., Lou, D., Tan, J., & Zhu, L. (2017). The effects of macromolecular crowding and surface charge on the properties of an immobilized enzyme: Activity, thermal stability, catalytic efficiency and reusability. RSC advances, 7(60), 38028–38036.

    Article  CAS  Google Scholar 

  22. Chong, S. L., Cardoso, V., Brás, J. L. A., Gomes, M. Z. D. V., Fontes, C. M. G. A., & Olsson, L. (2019). Immobilization of bacterial feruloyl esterase on mesoporous silica particles and enhancement of synthetic activity by hydrophobic-modified surface. Bioresource Technology, 293, 122009.

    Article  PubMed  CAS  Google Scholar 

  23. Ozyilmaz, E., Cetinguney, S., & Yilmaz, M. (2019). Encapsulation of lipase using magnetic fluorescent calix[4]arene derivatives, improvement of enzyme activity and stability. International Journal of Biological Macromolecules, 133, 1042–1050.

    Article  PubMed  CAS  Google Scholar 

  24. Sayin, S., Ozyilmaz, E., Oguz, M., Yusufoglu, R., & Yilmaz, M. (2020). Calixarenes functionalised water-soluble iron oxide magnetite nanoparticles for enzyme immobilisation. Supramolecular Chemistry, 32(5), 334–344.

    Article  CAS  Google Scholar 

  25. Ozyilmaz, E., & Sayin, S. (2018). Utilization of catalytic properties of the encapsulated lipase with calix[4]arene-adorned sporopollenin. Polycyclic Aromatic Compounds, 38(3), 272–281.

    Article  CAS  Google Scholar 

  26. Veesar, I. A., Memon, S., Junejo, R., & Solangi, I. B. (2021). Application of immobilized α-amylase onto functionalized calix[4]arene for the degradation of starch. Advanced Journal of Chemistry-Section A, 4(1), 1–9.

    CAS  Google Scholar 

  27. Ozyilmaz, E., & Eski, F. (2020). Effect of cyclic and acyclic surfactants on the activity of Candida rugosa lipase. Bioprocess and Biosystems Engineering, 43, 2085–2093.

    Article  PubMed  Google Scholar 

  28. Khan, I., Nagarjuna, R., Dutta, J. R., & Ganesan, R. (2019). Towards single crystalline, highly monodisperse and catalytically active gold nanoparticles capped with probiotic Lactobacillus plantarum derived lipase. Applied Nanoscience, 9, 1101–1109.

    Article  CAS  Google Scholar 

  29. Chen, J., Sun, B., Sun, C., Zhang, P., & Tang, K. (2020). Immobilization of lipase AYS on UiO-66-NH2 metal-organic framework nanoparticles as a recyclable biocatalyst for ester hydrolysis and kinetic resolution. Separation and Purification Technology, 251, 117398.

    Article  CAS  Google Scholar 

  30. Li, Q., Chen, Y., Bai, S., Shao, X., & Li, Q. (2020). Immobilized lipase in bio-based metal-organic frameworks constructed by biomimetic mineralization: A sustainable biocatalyst for biodiesel synthesis. Colloids and surfaces B: Biointerfaces, 188, 110812.

    Article  PubMed  CAS  Google Scholar 

  31. Nadar, S. S., & Rathod, V. K. (2020). Immobilization of proline activated lipase within metal organic framework (MOF). International Journal of Biological Macromolecules, 152, 1108–1112.

    Article  PubMed  Google Scholar 

  32. Suo, H., Li, M., Liu, R., & Xu, L. (2021). Enhancing bio-catalytic performance of lipase immobilized on ionic liquids modified magnetic polydopamine. Colloids and Surfaces B: Biointerfaces, 206, 111960.

    Article  PubMed  CAS  Google Scholar 

  33. Feng, D., Liu, T. F., Su, J., Bosch, M., Wei, Z., Wan, W., Yuan, D., Chen, Y. P., Wang, X., & Wang, K. (2015). Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation. Nature Communications, 6, 5979.

    Article  PubMed  Google Scholar 

  34. Baloch, K. A., Upaichit, A., & Cheirsilp, B. (2021). Multilayered nano-entrapment of lipase through organic-inorganic hybrid formation and the application in cost-effective biodiesel production. Applied Biochemistry and Biotechnology, 193, 165–187.

    Article  PubMed  CAS  Google Scholar 

  35. Hu, X., Zhu, Z., Dong, H., Zhu, X., Zhu, H., Ogawa, K., & Chen, H. (2020). Inorganic and metal-organic nanocomposites for cascade-responsive imaging and photochemical synergistic effects. Inorganic Chemistry, 59, 4617–4625.

    Article  PubMed  CAS  Google Scholar 

  36. Sutrisna, P. D., Prasetya, N., Himma, N. F., & Wenten, I. G. (2020). A mini-review and recent outlooks on the synthesis and applications of zeolite imidazolate framework-8 (ZIF-8) membranes on polymeric substrate. Journal of Chemical Technology and Biotechnology, 95, 2767–2774.

    Article  CAS  Google Scholar 

  37. Li, Y., Wee, L. H., Volodin, A., Martens, J. A., & Vankelecom, I. F. (2015). Polymer supported ZIF-8 membranes prepared via an interfacial synthesis method. Chemical Communications, 51, 918–920.

    Article  PubMed  CAS  Google Scholar 

  38. Zhang, S., Deng, Q., Li, Y., Zheng, M., Wan, C., Zheng, C., Tang, H., Huang, F., & Shi, J. (2018). Novel amphiphilic polyvinylpyrrolidone functionalized silicone particles as carrier for low-cost lipase immobilization. Royal Society Open Science, 5, 172368.

    Article  PubMed  PubMed Central  Google Scholar 

  39. de Souza, T. C., de Sousa Fonseca, T., de Sousa Silva, J., Lima, P. J. M., Neto, C. A. C. G., Monteiro, R. R. C., de Rocha, M. V. P., Mattos, M. C., dos Santos, J. C. S., & Gonçalves, L. R. B. (2020). Modulation of lipase B from Candida antarctica properties via covalent immobilization on eco-friendly support for enzymatic kinetic resolution of rac-indanyl acetate. Bioprocess and Biosystems Engineering, 43, 2253–2268.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant no. 61875114 and 62005156).

Author information

Authors and Affiliations

Authors

Contributions

RH, ZN, and YL: data curation, formal analysis, validation, writing—original draft. HZ, ZM, and KY: formal analysis, writing—original draft. XH and HC: conceptualization, resources, funding acquisition, writing—review and editing.

Corresponding authors

Correspondence to Xiaojun Hu or Hongxia Chen.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

All authors consent to participate.

Consent for Publication

All authors have approved the last version of the manuscript for its submission.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12468 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, R., Niu, Z., Lu, Y. et al. Immobilization for Lipase: Enhanced Activity and Stability by Flexible Combination and Solid Support. Appl Biochem Biotechnol 194, 5963–5976 (2022). https://doi.org/10.1007/s12010-022-04026-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04026-z

Keywords

Navigation