Skip to main content
Log in

opplncRNA: A MATLAB Package for Comprehensive Pathway Analysis of lncRNA-miRNA-mRNA in Humans

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The discovery of new lncRNAs (long noncoding RNAs) and their regulatory pathways has always been a hotspot in the field of ceRNA (competing endogenous RNA). Herein, we report opplncRNA (Omics Pilot Platform of lncRNA), a novel and rapid tool for investigating lncRNA-miRNA-mRNA interactions based on the architecture of MATLAB AppDesigner. opplncRNA is useful to analyze the regulatory interaction networks of lncRNA with a friendly GUI (graphical user interface). There are three lncRNA databases (ENCORI, LncBase, and miRcode) about lncRNA-miRNA interactions that have been integrated into opplncRNA, as well as seven miRNA databases (miRcode, ENCORI, TarBase, miRTarBase, miRDB, miRanda, and miRecords) about miRNA-mRNA interactions as also. opplncRNA can read expression data from any profile techniques, such as microarray or RNA-seq. Then, the relationships between lncRNA-miRNA and miRNA-mRNA can be directly calculated through the profile data of lncRNA, miRNA, and mRNA by the threshold of correlation coefficients. Integrated databases can be used to filter calculation outcomes to obtain more reliable pathways. Moreover, opplncRNA has the functionality of directly demonstrating 3 layers network from lncRNA to mRNA in command line form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The program of opplncRNA was available at https://github.com/HangZhouSheep/opplncRNA.

Abbreviations

GDC:

Genomic Data Commons

GUI:

Graphical user interface

OPP:

Omics Pilot Platform

TSV:

Tab-separated values

URS:

Unique RNA sequence

ceRNA:

Competing endogenous RNA

lncRNA:

Long noncoding RNA

mRNA:

Messenger RNA

miRNA:

MicroRNA

pre-miRNAs:

Precursor miRNAs

ncRNA:

Noncoding RNA

opplncRNA:

Omics Pilot Platform of lncRNA

RBPs:

RNA‐binding proteins:

pre-miRNA:

Precursor miRNA

References

  1. Li, Y., Humphries, B., Yang, C., Wang, Z. (2018). Nanoparticle-mediated therapeutic agent delivery for treating metastatic breast cancer-challenges and opportunities. Nanomaterials (Basel), 8(6).

  2. Zhao, Y., Jia, L., Zheng, Y., & Li, W. (2020). Involvement of noncoding RNAs in the differentiation of osteoclasts. Stem Cells International, 2020, 4813140.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhang, Y., Zhang, D., Lv, J., Wang, S., & Zhang, Q. (2019). LncRNA SNHG15 acts as an oncogene in prostate cancer by regulating miR-338-3p/FKBP1A axis. Gene, 705, 44–50.

    Article  PubMed  CAS  Google Scholar 

  4. Campos-Parra, A. D., Lopez-Urrutia, E., Orozco Moreno, L. T., Lopez-Camarillo, C., Meza-Menchaca, T., Figueroa Gonzalez, G., et al. (2018). Long non-coding RNAs as new master regulators of resistance to systemic treatments in breast cancer. International Journal of Molecular Sciences, 19(9).

  5. Huang, Y. A., Chan, K. C. C., & You, Z. H. (2018). Constructing prediction models from expression profiles for large scale lncRNA-miRNA interaction profiling. Bioinformatics, 34(5), 812–819.

    Article  PubMed  CAS  Google Scholar 

  6. Wang, W., Min, L., Qiu, X., Wu, X., Liu, C., Ma, J., et al. (2021). Biological function of long non-coding RNA (LncRNA) XIST. Frontiers in Cell and Developmental Biology, 9, 645647.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lv, C., Sun, J., Ye, Y., Lin, Z., Li, H., Liu, Y., et al. (2022). Long noncoding RNA EIF1AX-AS1 promotes endometrial cancer cell apoptosis by affecting EIF1AX mRNA stabilization. Cancer Science, 113(4), 1277–1291.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Batista, P. J., & Chang, H. Y. (2013). Long noncoding RNAs: Cellular address codes in development and disease. Cell, 152(6), 1298–1307.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Ge, S., Mi, Y., Zhao, X., Hu, Q., Guo, Y., Zhong, F., et al. (2020). Characterization and validation of long noncoding RNAs as new candidates in prostate cancer. Cancer Cell International, 20(1), 531.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Chang, X., Zhu, G., Cai, Z., Wang, Y., Lian, R., Tang, X., et al. (2021). miRNA, lncRNA and circRNA: Targeted molecules full of therapeutic prospects in the development of diabetic retinopathy. Frontiers in Endocrinology (Lausanne)., 12, 771552.

    Article  PubMed Central  Google Scholar 

  11. Shimomura, H., Okada, R., Tanaka, T., Hozaka, Y., Wada, M., Moriya, S., et al. (2020). Role of miR-30a-3p regulation of oncogenic targets in pancreatic ductal adenocarcinoma pathogenesis. International Journal of Molecular Sciences, 21(18).

  12. Shi, Y., & Liu, Z. (2020). Serum miR-92a-1 is a novel diagnostic biomarker for colorectal cancer. Journal of Cellular and Molecular Medicine, 24(15), 8363–8367.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Shih, C. H., Chuang, L. L., Tsai, M. H., Chen, L. H., Chuang, E. Y., Lu, T. P., et al. (2021). Hypoxia-induced MALAT1 promotes the proliferation and migration of breast cancer cells by sponging MiR-3064-5p. Frontiers in Oncology, 11, 658151.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Du, J., Zhang, G., Qiu, H., Yu, H., & Yuan, W. (2020). A novel positive feedback loop of linc02042 and c-Myc mediated by YBX1 promotes tumorigenesis and metastasis in esophageal squamous cell carcinoma. Cancer Cell International, 20, 75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Derrien, T., Johnson, R., Bussotti, G., Tanzer, A., Djebali, S., Tilgner, H., et al. (2012). The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression. Genome Research, 22(9), 1775–1789.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Karagkouni, D., Paraskevopoulou, M. D., Tastsoglou, S., Skoufos, G., Karavangeli, A., Pierros, V., et al. (2020). DIANA-LncBase v3: Indexing experimentally supported miRNA targets on non-coding transcripts. Nucleic Acids Research, 48(D1), D101–D110.

    PubMed  CAS  Google Scholar 

  17. Jeggari, A., Marks, D. S., & Larsson, E. (2012). miRcode: A map of putative microRNA target sites in the long non-coding transcriptome. Bioinformatics, 28(15), 2062–2063.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Enright, A. J., John, B., Gaul, U., Tuschl, T., Sander, C., & Marks, D. S. (2003). MicroRNA targets in drosophila. Genome Biology, 5(1), R1.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Xiao, F., Zuo, Z., Cai, G., Kang, S., Gao, X., & Li, T. (2009). miRecords: An integrated resource for microRNA-target interactions. Nucleic Acids Research, 37(Database issue), D105-10.

    Article  PubMed  CAS  Google Scholar 

  20. Vergoulis, T., Vlachos, I. S., Alexiou, P., Georgakilas, G., Maragkakis, M., Reczko, M., et al. (2012). TarBase 6.0: Capturing the exponential growth of miRNA targets with experimental support. Nucleic Acids Research, 40(Database issue), D222-9.

    Article  PubMed  CAS  Google Scholar 

  21. Chen, Y., & Wang, X. (2020). miRDB: An online database for prediction of functional microRNA targets. Nucleic Acids Research, 48(D1), D127–D131.

    Article  PubMed  CAS  Google Scholar 

  22. Betel, D., Koppal, A., Agius, P., Sander, C., & Leslie, C. (2010). Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biology, 11(8), R90.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Li, J. H., Liu, S., Zhou, H., Qu, L. H., & Yang, J. H. (2014). starBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Research, 42(Database issue), D92-7.

    Article  PubMed  CAS  Google Scholar 

  24. Li, R., Qu, H., Wang, S., Wei, J., Zhang, L., Ma, R., et al. (2018). GDCRNATools: An R/Bioconductor package for integrative analysis of lncRNA, miRNA and mRNA data in GDC. Bioinformatics, 34(14), 2515–2517.

    Article  PubMed  Google Scholar 

  25. Mounir, M., Lucchetta, M., Silva, T. C., Olsen, C., Bontempi, G., Chen, X., et al. (2019). New functionalities in the TCGAbiolinks package for the study and integration of cancer data from GDC and GTEx. PLoS Computational Biology, 15(3), e1006701.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are so grateful for the selfless help from the Shanghai Huisen Science & Technology Company for the daily maintenance of the website.

Funding

This research was supported by the National Key R&D Program of China (2021YFF0703702) and the National Nature Science Foundation of China (32070605).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: Shengyang Ge and Yang Zhang; administrative support: Chuanyu Sun and Yang Zhang; provision of study materials or patients: Shengyang Ge and Chuan-yu Sun; collection and assembly of data: Yang Zhang; data analysis and interpretation: Yang Zhang and Zening Wang; program writing: Yang Zhang; manuscript writing: all authors; final approval of manuscript: all authors.

Corresponding authors

Correspondence to Chuan-yu Sun or Yang Zhang.

Ethics declarations

Ethics Approval

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, Sy., Tan, Yf., Wang, Zn. et al. opplncRNA: A MATLAB Package for Comprehensive Pathway Analysis of lncRNA-miRNA-mRNA in Humans. Appl Biochem Biotechnol 194, 5644–5654 (2022). https://doi.org/10.1007/s12010-022-04025-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04025-0

Keywords

Navigation