Skip to main content
Log in

Apatinib Through Activating the RhoA/ROCK Signaling Pathway to Cause Dysfunction of Vascular Smooth Muscle Cells

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Vascular smooth muscle cells (VSMCs) are associated with differentiated, organized, and contractile phenotype under the effect of various types of physiological conditions those are associated with migratory, proliferative, and synthetic phenotype under the effect of various types of stimuli, which dysfunction drives many cardiovascular diseases. Abnormal cell proliferation and invasion of VSMCs are among the primary causes of hypertension. Apatinib is a small-molecule tyrosine kinase inhibitor (TKI) that highly selectively binds to and strongly inhibits VEGFR-2. Previous studies have confirmed that the TKIs can raise blood pressure through RhoA/ROCK pathway. LARG is a key gene in the RhoA/ROCK pathway and plays a critical role in the continuous vasoconstriction function because it regulates part of signal transduction in VSMCs. In this study, an in vitro experiment was conducted to observe that apatinib caused dysfunction of MOVAS cells through the RhoA/ROCK signalling pathway and Y27632, a nonspecific ROCK inhibitor, and knockout of LARG gene can improve the proliferation, antiapoptosis, oxidative stress, and mitochondrial autophagy of apatinib-induced MOVAS cells. These findings suggest that activation of the RhoA/ROCK signalling pathway could be the underlying mechanism of apatinib-induced dysfunction of MOVAS cells, while ROCK inhibitor and knockout of LARG gene have potential therapeutic value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

RhoA:

Rho-associated

ROCK:

Rho-associated coiled-coil domain-containing protein kinase

LARG:

Leukaemia-associated Rho-GEF

BP:

Blood pressure

TKIs:

Tyrosine kinase inhibitors

VEGFR-2:

Vascular endothelial growth factor receptor-2

VSMCs:

Vascular smooth muscle cells

MYPT1:

Myosin phosphatase target-1

MLC:

Myosin light chain

MLCP:

Myosin light chain phosphatase

CCK-8:

Cell counting kit-8

shRNA:

RNA-short hairpin RNA

ET-1:

Endothelin-1

eNOS:

Endothelial nitric oxide synthase

iNOS:

Inducible nitric oxide synthase

a-SMA:

Alpha smooth muscle actin

LC3:

MAP1LC3

ROS:

Photo-activated reactive oxygen species

Bax:

BCL2-Associated X

Bcl2:

B cell lymphoma/leukaemia-2

References

  1. Liu, K., Ren, T., Huang, Y., et al. (2017). Apatinib promotes autophagy and apoptosis through VEGFR2/STAT3/BCL-2 signaling in osteosarcoma. Cell Death & Disease, 8, e3015.

    Article  CAS  Google Scholar 

  2. Peng, S., Zhang, Y., Peng, H., et al. (2016). Intracellular autocrine VEGF signaling promotes EBDC cell proliferation, which can be inhibited by Apatinib. Cancer Letters, 373, 193–202.

    Article  CAS  PubMed  Google Scholar 

  3. Huang, M., Huang, B., Li, G., et al. (2018). Apatinib affect VEGF-mediated cell proliferation, migration, invasion via blocking VEGFR2/RAF/MEK/ERK and PI3K/AKT pathways in cholangiocarcinoma cell. BMC Gastroenterology, 18, 169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chu, L., Chen, Y., Liu, Q., et al. (2021). A Phase II study of apatinib in patients with chemotherapy-refractory esophageal squamous cell carcinoma (ESO-Shanghai 11). The Oncologist, 26, e925–e935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhao, L., Peng, Y., He, S., et al. (2021). Apatinib induced ferroptosis by lipid peroxidation in gastric cancer. Gastric Cancer, 24, 642–654.

    Article  CAS  PubMed  Google Scholar 

  6. Xu, J., Zhang, Y., Jia, R., et al. (2019). Anti-PD-1 Antibody SHR-1210 Combined with apatinib for advanced hepatocellular carcinoma, gastric, or esophagogastric junction cancer: An open-label, dose escalation and expansion study. Clinical Cancer Research, 25, 515–523.

    Article  CAS  PubMed  Google Scholar 

  7. Li, J., Qin, S., Xu, J., et al. (2013). Apatinib for chemotherapy-refractory advanced metastatic gastric cancer: Results from a randomized, placebo-controlled, parallel-arm, phase II trial. Journal of Clinical Oncology, 31, 3219–3225.

    Article  CAS  PubMed  Google Scholar 

  8. Li, C., Ma, L., Wang, Q., et al. (2022). Rho kinase inhibition ameliorates vascular remodeling and blood pressure elevations in a rat model of apatinib-induced hypertension. Journal of Hypertension, 40, 675–684.

    Article  CAS  PubMed  Google Scholar 

  9. Wang, W., He, Q., Zhang, H., et al. (2021). A narrative review on the interaction between genes and the treatment of hypertension and breast cancer. Ann Transl Med, 9, 894.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Huang, C. H., Ciou, J. S., Chen, S. T., et al. (2016). Identify potential drugs for cardiovascular diseases caused by stress-induced genes in vascular smooth muscle cells. PeerJ, 4, e2478.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tykocki, N. R., Boerman, E. M., & Jackson, W. F. (2017). Smooth muscle ion channels and regulation of vascular tone in resistance arteries and arterioles. Comprehensive Physiology, 7, 485–581.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhang, W., Chen, S., Zhang, Z., et al. (2017). FAM3B mediates high glucose-induced vascular smooth muscle cell proliferation and migration via inhibition of miR-322-5p. Science and Reports, 7, 2298.

    Article  Google Scholar 

  13. Seccia, T. M., Rigato, M., Ravarotto, V., & Calò, L. A. (2020). ROCK (RhoA/Rho Kinase) in cardiovascular-renal pathophysiology: A review of new advancements. Journal of Clinical Medicine, 9(5), 1328. https://doi.org/10.3390/jcm9051328

  14. Ito, M., Nakano, T., Erdodi, F., et al. (2004). Myosin phosphatase: Structure, regulation and function. Molecular and Cellular Biochemistry, 259, 197–209.

    Article  CAS  PubMed  Google Scholar 

  15. Chiu, W. C., Chiang, J. Y., & Chiang, F. T. (2021). Small chemical compounds Y16 and Rhosin can inhibit calcium sensitization pathway in vascular smooth muscle cells of spontaneously hypertensive rats. Journal of the Formosan Medical Association, 120, 1863–1868.

    Article  CAS  PubMed  Google Scholar 

  16. Syrovatkina, V., Alegre, K. O., Dey, R., et al. (2016). Regulation, signaling, and physiological functions of G-proteins. Journal of Molecular Biology, 428, 3850–3868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lankhorst, S., Severs, D., Markó, L., et al. (2017). Salt sensitivity of angiogenesis inhibition-induced blood pressure rise: Role of interstitial sodium accumulation? Hypertension, 69, 919–926.

    Article  CAS  PubMed  Google Scholar 

  18. Wirth, A., Benyó, Z., Lukasova, M., et al. (2008). G12–G13-LARG-mediated signaling in vascular smooth muscle is required for salt-induced hypertension. Nature Medicine, 14, 64–68.

    Article  CAS  PubMed  Google Scholar 

  19. Kitzing, T. M., Sahadevan, A. S., Brandt, D. T., et al. (2007). Positive feedback between Dia1, LARG, and RhoA regulates cell morphology and invasion. Genes & Development, 21, 1478–1483.

    Article  CAS  Google Scholar 

  20. Goulimari, P., Knieling, H., Engel, U., et al. (2008). LARG and mDia1 link Galpha12/13 to cell polarity and microtubule dynamics. Molecular Biology of the Cell, 19, 30–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Thompson, W. R., Yen, S. S., Uzer, G., et al. (2018). LARG GEF and ARHGAP18 orchestrate RhoA activity to control mesenchymal stem cell lineage. Bone, 107, 172–180.

    Article  CAS  PubMed  Google Scholar 

  22. Banerjee, P., Harada, H., Tassew, N. G., et al. (2016). ϒ-secretase and LARG mediate distinct RGMa activities to control appropriate layer targeting within the optic tectum. Cell Death and Differentiation, 23, 442–453.

    Article  CAS  PubMed  Google Scholar 

  23. Chen, J., Deng, S., Zhang, Y., et al. (2021). Apatinib enhances the anti-tumor effect of paclitaxel via the PI3K/p65/Bcl-xl pathway in triple-negative breast cancer. Ann Transl Med, 9, 1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Krausgruber, T., Blazek, K., Smallie, T., et al. (2011). IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nature Immunology, 12, 231–238.

    Article  CAS  PubMed  Google Scholar 

  25. Wang, X. Y., Mo, D., Tian, W., et al. (2019). Inhibition of RhoA/ROCK signaling pathway ameliorates hypoxic pulmonary hypertension via HIF-1α-dependent functional TRPC channels. Toxicology and Applied Pharmacology, 369, 60–72.

    Article  CAS  PubMed  Google Scholar 

  26. Xu, Y., Cui, K., Li, J., et al. (2020). Melatonin attenuates choroidal neovascularization by regulating macrophage/microglia polarization via inhibition of RhoA/ROCK signaling pathway. Journal of Pineal Research, 69, e12660.

    Article  CAS  PubMed  Google Scholar 

  27. Amano, M., Nakayama, M., & Kaibuchi, K. (2010). Rho-kinase/ROCK: A key regulator of the cytoskeleton and cell polarity. Cytoskeleton (Hoboken), 67, 545–554.

    Article  CAS  Google Scholar 

  28. Bishop, A. L., & Hall, A. (2000). Rho GTPases and their effector proteins. The Biochemical Journal, 348(Pt 2), 241–255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Raftopoulou, M., & Hall, A. (2004). Cell migration: Rho GTPases lead the way. Developmental Biology, 265, 23–32.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, X., Ye, P., Wang, D., et al. (2019). Involvement of RhoA/ROCK signaling in Aβ-induced chemotaxis, cytotoxicity and inflammatory response of microglial BV2 cells. Cellular and Molecular Neurobiology, 39, 637–650.

    Article  CAS  PubMed  Google Scholar 

  31. Frismantiene, A., Philippova, M., Erne, P., et al. (2018). Smooth muscle cell-driven vascular diseases and molecular mechanisms of VSMC plasticity. Cellular Signalling, 52, 48–64.

    Article  CAS  PubMed  Google Scholar 

  32. Kuntic, M., Oelze, M., Steven, S., et al. (2020). Short-term e-cigarette vapour exposure causes vascular oxidative stress and dysfunction: Evidence for a close connection to brain damage and a key role of the phagocytic NADPH oxidase (NOX-2). European Heart Journal, 41, 2472–2483.

    Article  CAS  PubMed  Google Scholar 

  33. Lankhorst, S., Saleh, L., Danser, A. J., et al. (2015). Etiology of angiogenesis inhibition-related hypertension. Current Opinion in Pharmacology, 21, 7–13.

    Article  CAS  PubMed  Google Scholar 

  34. Rajendran, P., Rengarajan, T., Thangavel, J., et al. (2013). The vascular endothelium and human diseases. International Journal of Biological Sciences, 9, 1057–1069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dong, Z. C., Wu, M. M., Zhang, Y. L., et al. (2021). The vascular endothelial growth factor trap aflibercept induces vascular dysfunction and hypertension via attenuation of eNOS/NO signaling in mice. Acta Pharmacologica Sinica, 42, 1437–1448.

    Article  CAS  PubMed  Google Scholar 

  36. Chiu, W. C., Juang, J. M., Chang, S. N., et al. (2012). Angiotensin II regulates the LARG/RhoA/MYPT1 axis in rat vascular smooth muscle in vitro. Acta Pharmacologica Sinica, 33, 1502–1510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang, H. (2015). Apatinib for molecular targeted therapy in tumor. Drug Des Devel Ther, 9, 6075–6081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ding, J., Chen, X., Dai, X., et al. (2012). Simultaneous determination of apatinib and its four major metabolites in human plasma using liquid chromatography-tandem mass spectrometry and its application to a pharmacokinetic study. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 895–896, 108–115.

    Article  PubMed  Google Scholar 

  39. Cook, D. R., Rossman, K. L., & Der, C. J. (2014). Rho guanine nucleotide exchange factors: Regulators of Rho GTPase activity in development and disease. Oncogene, 33, 4021–4035.

    Article  CAS  PubMed  Google Scholar 

  40. Amin, E., Dubey, B. N., Zhang, S. C., et al. (2013). Rho-kinase: Regulation, (dys)function, and inhibition. Biological Chemistry, 394, 1399–1410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Feng, F., Han, H., Wu, S., et al. (2021). Crosstalk between abnormal TSHR signaling activation and PTEN/PI3K in the dedifferentiation of thyroid cancer cells. Frontiers in Oncology, 11, 718578.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Chiu, W. C., Juang, J. M., Chang, S. N., et al. (2012). Differential baseline expression and angiotensin II-stimulation of leukemia-associated RhoGEF in vascular smooth muscle cells of spontaneously hypertensive rats. International Journal of Nanomedicine, 7, 5929–5939.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Dee, R. A., Mangum, K. D., Bai, X., et al. (2019). Druggable targets in the Rho pathway and their promise for therapeutic control of blood pressure. Pharmacology & Therapeutics, 193, 121–134.

    Article  CAS  Google Scholar 

  44. Wang, Y., Zheng, X. R., Riddick, N., et al. (2009). ROCK isoform regulation of myosin phosphatase and contractility in vascular smooth muscle cells. Circulation Research, 104, 531–540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shimizu, T., Fukumoto, Y., Tanaka, S., et al. (2013). Crucial role of ROCK2 in vascular smooth muscle cells for hypoxia-induced pulmonary hypertension in mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 33, 2780–2791.

    Article  CAS  PubMed  Google Scholar 

  46. Chiu, W. C., Chiang, J. Y., Juang, J. M., et al. (2020). Reduction of blood pressure elevation by losartan in spontaneously hypertensive rats through suppression of LARG expression in vascular smooth muscle cells. Journal of the Formosan Medical Association, 119, 164–172.

    Article  CAS  PubMed  Google Scholar 

  47. Zorov, D. B., Juhaszova, M., & Sollott, S. J. (2014). Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiological Reviews, 94, 909–950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zorov, D. B., Filburn, C. R., Klotz, L. O., et al. (2000). Reactive oxygen species (ROS)-induced ROS release: A new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. Journal of Experimental Medicine, 192, 1001–1014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Boveris, A., Oshino, N., & Chance, B. (1972). The cellular production of hydrogen peroxide. The Biochemical Journal, 128, 617–630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li, L., Tan, J., Miao, Y., et al. (2015). ROS and autophagy: Interactions and molecular regulatory mechanisms. Cellular and Molecular Neurobiology, 35, 615–621.

    Article  PubMed  Google Scholar 

  51. Nair, S., & Ren, J. (2012). Autophagy and cardiovascular aging: Lesson learned from rapamycin. Cell Cycle, 11, 2092–2099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yu, W., Zha, W., & Ren, J. (2018). Exendin-4 and liraglutide attenuate glucose toxicity-induced cardiac injury through mTOR/ULK1-dependent autophagy. Oxidative Medicine and Cellular Longevity, 2018, 5396806.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Fan, Y. J., & Zong, W. X. (2013). The cellular decision between apoptosis and autophagy. Chinese Journal of Cancer, 32, 121–129.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Amelio, I., Melino, G., & Knight, R. A. (2011). Cell death pathology: Cross-talk with autophagy and its clinical implications. Biochemical and Biophysical Research Communications, 414, 277–281.

    Article  CAS  PubMed  Google Scholar 

  55. Lin, P. Y., Chang, C. D., Chen, Y. C., et al. (2015). RhoA/ROCK1 regulates avian reovirus S1133-induced switch from autophagy to apoptosis. BMC Veterinary Research, 11, 103.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (NSFC-81960086, NSFC-81670385 to Jing Yu) and Science and Technology Department of Gansu Province (21JR1RA150) and Education Department of Gansu Province (2021B-043), and Cuiying Scientific and Technological Innovation Program of Lanzhou University Second Hospital (2020QN-07).

Author information

Authors and Affiliations

Authors

Contributions

Wenjuan Wang performed the experiments. Jing Yu, Qiongying Wang Caie Li, and Wenjuan Wang designed the study, and Wenjuan Wang wrote the initial draft of the manuscript. Qingjian He, Haodong Zhang, Chenchen Zhuang, and Fanxin analysed the data. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Jing Yu.

Ethics declarations

Ethics Approval

All work has been done under the guidelines of Institutional Ethics Committee.

Consent to Participate

All authors have their consent to participate.

Consent for Publication

All authors have their consent to publish their work.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., He, Q., Zhuang, C. et al. Apatinib Through Activating the RhoA/ROCK Signaling Pathway to Cause Dysfunction of Vascular Smooth Muscle Cells. Appl Biochem Biotechnol 194, 5367–5385 (2022). https://doi.org/10.1007/s12010-022-04020-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04020-5

Keywords

Navigation