Skip to main content

Advertisement

Log in

Neuroprotective, Anti-inflammatory Effect of Furanochrome, Visnagin Against Middle Cerebral Ischemia-Induced Rat Model

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In recent years, the medical field had significantly progressed to a greater extent which was evidenced with increased life expectancy and decreased mortality rate. Due to the growth of medical field, numerous communicable diseases are prevented and eradicated, whereas the non-communicable disease incidence has been increased globally. One such non-communicable disease which threatens the global population is stroke. Stroke tends to be the second leading cause of death and disability in older population. In lower- and middle-income countries, increased incidence rate of stroke was also evidenced in younger population which is alarming. Lifestyle changes, poor physical activity, stress, consumption of alcohol, oral contraception, and smoking tend to be the causative agents of stroke. Since thrombus formation is the major pathology of stroke, drugs were targeted to thrombolysis. Currently thrombolytic, antiplatelet, and anticoagulant therapies were given for the stroke patients. But the recovery rate of stroke patients with available drugs is very slow. Hence, it is a need of today to discover a drug with increased recovery rate and decreased or nil side effects. Phytochemicals are the best options to treat such non-communicable chronic diseases. Visnagin is one such compound which is used to regulate blood pressure, treat kidney stones, tumors of bile duct, renal colic, and whooping cough. It possesses anti-inflammatory, neuroprotective, and cardioprotective properties; it was also proven to treat epileptic seizures. In this study, the anti-ischemic effect of a furanochrome visnagin was assessed in in vivo rat model. Middle cerebral ischemic/reperfusion was induced in healthy male Sprague Dawley rats and treated with different concentrations of visnagin. The neuroprotective effect of visnagin against cerebral ischemia-induced rats was assessed by analyzing the neurological score, brain edema, infract volume, and Evans blue leakage. The anti-inflammatory property of visnagin was assessed by quantifying proinflammatory cytokines in serum and brain tissues of cerebral ischemia-induced rats. Prostaglandin E-2, COX-2, and NFκ-β were estimated to assess the anti-ischemic effect of visnagin. Histopathological analysis with H&E staining was performed to confirm the neuroprotective effect of visnagin against cerebral ischemia. Our results authentically confirm that visnagin has prevented the inflammation in brain region of cerebral ischemia-induced rats. The neurological scoring and the quantification of PGE-2, COX-2, and NFκ-β prove the anti-ischemic effect of visnagin. Furthermore, the histopathological analysis of hippocampal region provides evidence to the neuroprotective effect of visnagin against cerebral ischemia. Overall, our study confirms visnagin as a potent alternative drug to treat stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. GBD 2017 DALYs and HALE Collaborators. Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet, 2018, 392(10159), 1859–1922.

  2. GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet, 2020, 396(10258), 1204–1222.

  3. Bhatnagar, P., Scarborough, P., Smeeton, N. C., & Allender, S. (2010). The incidence of all stroke and stroke subtype in the United Kingdom, 1985 to 2008: A systematic review. BMC Public Health, 10, 539.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Katan, M., & Luft, A. (2018). Global burden of stroke. Seminars in Neurology, 38(2), 208–211.

    Article  PubMed  Google Scholar 

  5. Tadi, P., Lui, F. (2021). Acute stroke. [Updated 2021 Sep 29]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK535369/

  6. Ekker, M. S., Boot, E. M., Singhal, A. B., et al. (2018). Epidemiology, aetiology, and management of ischaemic stroke in young adults. The Lancet Neurology, 17, 790–801.

    Article  PubMed  Google Scholar 

  7. Tibæk, M., Dehlendorff, C., Jørgensen, H. S., Forchhammer, H. B., Johnsen, S. P., & Kammersgaard, L. P. (2016). Increasing incidence of hospitalization for stroke and transient ischemic attack in young adults: a registry-based study. Journal of the American Heart Association, 5(5), e003158. https://doi.org/10.1161/JAHA.115.003158

  8. Yahya, T., Jilani, M. H., Khan, S. U., Mszar, R., Hassan, S. Z., Blaha, M. J., & Nasir, K. (2020). Stroke in young adults: Current trends, opportunities for prevention and pathways forward. American Journal of Preventive Cardiology, 3, 100085.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chen, L., Kong, L., Wei, X., Wang, Y., Wang, B., Zhang, X., Sun, J., & Liu, H. (2019). β-arrestin 2 negatively regulates NOD2 signalling pathway through association with TRAF6 in microglia after cerebral ischaemia/reperfusion injury. Journal of Cellular and Molecular Medicine, 23(5), 3325–3335.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Parada, E., Casas, A. I., Palomino-Antolin, A., Gómez-Rangel, V., Rubio-Navarro, A., Farré-Alins, V., & Egea, J. (2019). Early toll-like receptor 4 blockade reduces ROS and inflammation triggered by microglial pro-inflammatory phenotype in rodent and human brain ischaemia models. British Journal of Pharmacology, 176(15), 2764–2779.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Xiong, X., White, R. E., Xu, L., Yang, L., Sun, X., Zou, B., & Xie, X. S. (2013). Mitigation of murine focal cerebral ischemia by the hypocretin/orexin system is associated with reduced inflammation. Stroke, 44(3), 764–770.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Posada-Duque, R. A., Barreto, G. E., & Cardona-Gomez, G. P. (2014). Protection after stroke: Cellular effectors of neurovascular unit integrity. Frontiers in Cellular Neuroscience, 14(8), 231.

    Google Scholar 

  13. Lapchak, P. A. (2011). Neuroprotective and neurotrophic curcuminoids to treat stroke: A translational perspective. Expert Opinion on Investigational Drugs, 20(1), 13–22.

    Article  PubMed  CAS  Google Scholar 

  14. Fugate, J. E., & Rabinstein, A. A. (2014). Update on intravenous recombinant tissue plasminogen activator for acute ischemic stroke. Mayo Clinic Proceedings, 89, 960–972.

    Article  PubMed  CAS  Google Scholar 

  15. Emberson, J., Lees, K. R., Lyden, P., Blackwell, L., Albers, G., Bluhmki, E., Brott, T., & Hacke, W. (2014). Stroke Thrombolysis Trialists’ Collaborative Group. Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke: A meta-analysis of individual patient data from randomised trials. Lancet, 384(9958), 1929–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Chen, Q. F., Liu, Y. Y., Pan, C. S., Fan, J. Y., Yan, L., Hu, B. H., Chang, X., Li, Q., & Han, J. Y. (2018). Angioedema and hemorrhage after 4.5-hour tPA (tissue-type plasminogen activator) thrombolysis ameliorated by T541 via restoring brain microvascular integrity. Stroke, 49(9), 2211–2219.

    Article  PubMed  CAS  Google Scholar 

  17. Dodds, J. A., Xian, Y., Sheng, S., Fonarow, G. C., Bhatt, D. L., Matsouaka, R., Schwamm, L. H., Peterson, E. D., & Smith, E. E. (2019). Thrombolysis in young adults with stroke: Findings from Get with The Guidelines-Stroke. Neurology, 92(24), 2784–2792.

    Article  Google Scholar 

  18. Batanouny, K. H. (2001). Wild medicinal plants in Egypt: An inventory to support conservation and sustainable use. Acad of Scientific Research & Technology.

  19. Lee, J. K., Jung, J. S., Park, S. H., Park, S. H., Sim, Y. B., Kim, S. M., Ha, T. S., & Suh, H. W. (2010). Anti-inflammatory effect of visnagin in lipopolysaccharide-stimulated BV-2 microglial cells. Archives of Pharmacal Research, 33(11), 1843–1850.

    Article  PubMed  CAS  Google Scholar 

  20. Bhagavathula, A. S., Mahmoud Al-Khatib, A. J., Elnour, A. A., Al Kalbani, N. M., & Shehab, A. (2014). Ammi Visnaga in treatment of urolithiasis and hypertriglyceridemia. Pharmacognosy Res, 7(4), 397–400.

    PubMed  Google Scholar 

  21. Khalil, N., Bishr, M., Desouky, S., Salama, O. (2020). Ammi Visnaga L., a potential medicinal plant: A review. Molecules, 25(2), 301.

  22. Pasari, L. P., Khurana, A., Anchi, P., Saifi, M. A., Annaldas, S., & Godugu, C. (2019). Visnagin attenuates acute pancreatitis via Nrf2/NFκB pathway and abrogates associated multiple organ dysfunction. Biomedicine & Pharmacotherapy, 112, 108629.

    Article  CAS  Google Scholar 

  23. Kwon, M. S., Lee, J. K., Park, S. H., Sim, Y. B., Jung, J. S., Won, M. H., Kim, S. M., & Suh, H. W. (2010). Neuroprotective effect of visnagin on kainic acid-induced neuronal cell death in the mice hippocampus. The Korean Journal of Physiology & Pharmacology, 14(5), 257–263.

    Article  CAS  Google Scholar 

  24. Liu, Y., Asnani, A., Zou, L., Bentley, V. L., Yu, M., Wang, Y., Dellaire, G., Sarkar, K. S., Dai, M., Chen, H. H., Sosnovik, D. E., Shin, J. T., Haber, D. A., Berman, J. N., & Chao, W. (2014). Peterson RT 2014 Visnagin protects against doxorubicin-induced cardiomyopathy through modulation of mitochondrial malate dehydrogenase. Science Translational Medicine, 6(266), 266170.

    Article  Google Scholar 

  25. Zhang, Z., Wu, Y., Yuan, S., Zhang, P., Zhang, J., Li, H., et al. (2018). Glutathione peroxidase 4 participates in secondary brain injury through mediating ferroptosis in a rat model of intracerebral hemorrhage. Brain Research, 1701, 112–125.

    Article  PubMed  CAS  Google Scholar 

  26. Long, E. Z., Weinstein, P. R., Carlson, S., & Cummins, R. (1989). Reversible middle cerebral cerebral artery occlusion without craniectomy in rat. Stroke, 20, 84–91.

    Article  Google Scholar 

  27. Wang, J., Wang, H., Zhu, R., Liu, Q., Fei, J., & Wang, S. (2015). Anti-inflammatory activity of curcumin-loaded solid lipid nanoparticles in IL-1beta transgenic mice subjected to the lipopolysaccharide-induced sepsis. Biomaterials, 53, 475–483.

    Article  PubMed  CAS  Google Scholar 

  28. Zhai, S., Zhu, L., Qin, S., & Li, L. (2018). Effect of lactulose intervention on gut microbiota and short chain fatty acid composition of C57BL/6J Mice. Microbiologyopen, 7(6), e00612.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Huang, Y., Wang, X., Guan, S., Lin, H., Mei, Z., & Huang, Z. (2022). Syringin protects against cerebral ischemia and reperfusion injury via suppression of inflammatory mediators and toll-like receptor/MyD88 signaling pathway in rats. Phcog Mag, 18, 168–174.

    Article  CAS  Google Scholar 

  30. Garbuzova-Davis, S., et al. (2014). Compromised blood-brain barrier competence in remote brain areas in ischemic stroke rats at the chronic stage. The Journal of Comparative Neurology, 522(13), 3120–3137.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhang, H. S., Liu, M. F., Ji, X. Y., Jiang, C. R., Li, Z. L., & OuYang, B. (2019). Gastrodin combined with rhynchophylline inhibits cerebral ischaemia-induced inflammasome activation via upregulating miR-21-5p and miR-331-5p. Life Sciences, 239, 116935.

    Article  PubMed  CAS  Google Scholar 

  32. Shakir, R. (2018). The struggle for stroke reclassification. Nature Reviews. Neurology, 14(8), 447–448.

    Article  PubMed  Google Scholar 

  33. Kuriakose, D., & Xiao, Z. (2020). Pathophysiology and treatment of stroke: Present status and future perspectives. International Journal of Molecular Sciences, 21(20), 7609.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Fluri, F., Schuhmann, M. K., & Kleinschnitz, C. (2015). Animal models of ischemic stroke and their application in clinical research. Drug Des Devel Ther, 9, 3445–3454.

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Hum, P. D., Subramanian, S., Parker, S. M., Afentoulis, M. E., Kaler, L. J., & Vandenbark, A. A. (2007). T-and B-cell-deficient mice with experimental stroke have reduced lesion size and inflammation. Journal of Cerebral Blood Flow and Metabolism, 27(11), 1798–1805.

    Article  Google Scholar 

  36. Lakhan, S. E., Kirchgessner, A., & Hofer, M. (2009). Inflammatory mechanisms in ischemic stroke: Therapeutic approaches. J Translational Med, 7(1), 97.

    Article  Google Scholar 

  37. Reyes, R., Cardeñes, B., Machado-Pineda, Y., & Cabañas, C. (2018 Apr). Tetraspanin CD9: A key regulator of cell adhesion in the immune system. Frontiers in Immunology, 30(9), 863. https://doi.org/10.3389/fimmu.2018.00863

  38. Yan, W., Ren, D., Feng, X., Huang, J., Wang, D., Li, T., & Zhang, D. (2021). Neuroprotective and anti-inflammatory effect of pterostilbene against cerebral ischemia/reperfusion injury via suppression of COX-2. Frontiers in Pharmacology, 12, 770329.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Wang, C. X., & Shuaib, A. (2002). Involvement of inflammatory cytokines in central nervous system injury. Progress in Neurobiology, 67(2), 161–172.

    Article  PubMed  CAS  Google Scholar 

  40. Shi, C. X., Ding, Y. B., Jin, F. Y. J., Li, T., Ma, J. H., Qiao, L. Y., Pan, W. Z., & Li, K. Z. (2018). Effects of sevoflurane post-conditioning in cerebral ischemia-reperfusion injury via TLR4/NF-κB pathway in rats. European Review for Medical and Pharmacological Sciences, 22(6), 1770–1775.

    PubMed  Google Scholar 

  41. Wang, Q., Tang, X. N., & Yenari, M. A. (2007). The inflammatory response in stroke. Journal of Neuroimmunology, 184(1–2), 53–68.

    Article  PubMed  CAS  Google Scholar 

  42. Protti, G. G., Gagliardi, R. J., Forte, W. C., & Sprovieri, S. R. (2013). Interleukin-10 may protect against progressing injury during the acute phase of ischemic stroke. Arquivos de Neuro-Psiquiatria, 71(11), 846–851.

    Article  PubMed  Google Scholar 

  43. van Exel, E., Gussekloo, J., de Craen, A. J., Bootsma-van der Wiel, A., Frölich, M., & Westendorp, R. G. (2002). Inflammation and stroke: The Leiden 85-Plus Study. Stroke, 33(4), 1135–1138.

    Article  PubMed  Google Scholar 

  44. Khan, M. M., Gandhi, C., Chauhan, N., Stevens, J. W., Motto, D. G., Lentz, S. R., & Chauhan, A. K. (2012). Alternatively-spliced extra domain A of fibronectin promotes acute inflammation and brain injury after cerebral ischemia in mice. Stroke, 43(5), 1376–1382.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Li, S. Y., Yang, D., Fu, Z. J., Woo, T., Wong, D., & Lo, A. C. (2012). Lutein enhances survival and reduces neuronal damage in a mouse model of ischemic stroke. Neurobiology of Diseases, 45(1), 624–632.

    Article  CAS  Google Scholar 

  46. Liang, S., Chen, Z., Li, H., Cang, Z., Yin, K., Wu, M., & Luo, S. (2021). Neuroprotective effect of Umbelliferone against cerebral ischemia/reperfusion induced neurological deficits: In-vivo and in-silico studies. Journal of Biomolecular Structure & Dynamics, 39(13), 4715–4725.

    Article  CAS  Google Scholar 

  47. Yuan, S., & Zhang, T. (2021). Boeravinone B protects brain against cerebral ischemia reperfusion injury in rats: Possible role of anti-inflammatory and antioxidant. Journal of Oleo Science, 70, 927–936.

    Article  PubMed  CAS  Google Scholar 

  48. Yuan, H., Yang, Q., Yang, B., Xu, H., Nasif, O., Muruganantham, S., et al. (2021). Phyllanthin averts oxidative stress and neuroinflammation in cerebral ischemic-reperfusion injury through modulation of the NF-Κb and AMPK/Nrf2 pathways. Journal of Environmental Pathology, Toxicology and Oncology, 40, 85–97.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally.

Corresponding author

Correspondence to Qiangyuan Tian.

Ethics declarations

Ethics Approval

All work has been done under the guidelines of the Institutional Ethics Committee.

Consent to Participate

All authors have their consent to participate.

Consent for Publication

All authors have their consent to publish their work.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Q., Yin, H., Li, J. et al. Neuroprotective, Anti-inflammatory Effect of Furanochrome, Visnagin Against Middle Cerebral Ischemia-Induced Rat Model. Appl Biochem Biotechnol 194, 5767–5780 (2022). https://doi.org/10.1007/s12010-022-04009-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04009-0

Keywords

Navigation