Skip to main content
Log in

Moringa oleifera Nanoparticles Demonstrate Antifungal Activity Against Plant Pathogenic Fungi

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Fungal diseases in plants are creating numerous problems in the developed and developing nations. Silver, a notable metal because of its inertness and its role in nanoscience, has received a considerable amount of focus in the development of an ecofriendly green solution to control many microbial infections. The herbal product from various plant sources with the combination of silver was used to develop nanoparticles, against the pathogens. In this study, we developed Moringa oleifera leaf- and flower-mediated silver nanoparticles with the particle size of 77.45 nm and 63.20 nm respectively. Fungicidal activity of both Moringa oleifera leaf (MLNp) and flower (MFNp) nanoparticles was studied in vitro against plant pathogenic fungi Pestalotiopsis mangiferae isolated from infected coconut palm. Nanoparticles from Moringa oleifera leaves and flowers reduced the radial growth of fungi significantly even at lower concentrations and acted as a potent fungistatic agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be available on request.

Code Availability

Not applicable

Abbreviations

AgNO3:

silver nitrate

AgNPs:

silver nanoparticles

NPs:

nanoparticles

PDA:

potato dextrose agar

nm:

nanometer

μm:

micrometer

mm:

millimeter

UV:

ultraviolet

SEM:

scanning electron microscopy

FTIR:

Fourier transform infrared spectroscopy

EtBr:

ethidium bromide

References

  1. Akther, T., Khan, M. S., & Hemalatha, S. (2020). Biosynthesis of silver nanoparticles via fungal cell filtrate and their anti-quorum sensing against Pseudomonas aeruginosa. Journal of Environmental Chemical Engineering, 8(6), 104365.

    Article  CAS  Google Scholar 

  2. Akther, T., Ranjani, S., & Hemalatha, S. (2021). Nanoparticles engineered from endophytic fungi (Botryosphaeria rhodina) against ESBL-producing pathogenic multidrug-resistant E. coli. Environmental Sciences Europe, 33, 83. https://doi.org/10.1186/s12302-021-00524-9

    Article  CAS  Google Scholar 

  3. Bagheri, G., Martorell, M., Ramírez-Alarcón, K., Salehi, B., & Sharifi-Rad, J. (2020). Phytochemical screening of Moringa oleifera leaf extracts and their antimicrobial activities. Cellular and Molecular Biology (Noisy-le-Grand, France), 66(1), 20–26.

    Article  Google Scholar 

  4. Basheerudeen, M. A., Mushtaq, S., Soundhararajan, R., Nachimuthu, S. K., & Srinivasan H. (2020). Marine endophytic fungi mediated silver nanoparticles and their application in plant growth promotion in Vigna radiata L. International Journal of Nano Dimension, 12(1):1–10.

  5. Castillo-Henríquez, L., Alfaro-Aguilar, K., Ugalde-Álvarez, J., Vega-Fernández, L., Montes de Oca-Vásquez, G., & Vega-Baudrit, J. R. (2020). Green synthesis of gold and silver nanoparticles from plant extracts and their possible applications as antimicrobial agents in the agricultural area. Nanomaterials (Basel, Switzerland)., 10(9), 1763. https://doi.org/10.3390/nano10091763

    Article  CAS  PubMed Central  Google Scholar 

  6. Chethana, M., Sorokhaibam, L. G., Bhandari, V. M., Raja, S., & Ranade, V. V. (2016). Green approach to dye wastewater treatment using biocoagulants. ACS Sustainable Chemistry & Engineering, 4(5), 2495–2507. https://doi.org/10.1021/acssuschemeng.5b01553

    Article  CAS  Google Scholar 

  7. El-Mohamedy, R. S., & Abdalla, A. M. (2014). Evaluation of antifungal activity of Moringa oleifera extracts as natural fungicide against some plant pathogenic fungi in-vitro. International Journal of Agricultural Technology, 10, 963–982.

    Google Scholar 

  8. Jayaprakash, R., Sha, S. K., Hemalatha, S., & Easwaramoorthy, D. (2016). Synthesis, characterization, quantitative structure-activity relationship, docking, antibacterial activity, and brine shrimp lethal studies on l-phenylalanine schiff bases. Asian Journal of Pharmaceutical and Clinical Research, 9(9), 203–208. https://doi.org/10.22159/ajpcr.2016.v9s3.14664

    Article  CAS  Google Scholar 

  9. Khan, S. U., Anjum, S. I., Ansari, M. J., Ullah Khan, M. H., Kamal, S., Rahman, K., Shoaib, M., Man, S., Khan, A. J., Khan, S. J., & Khan, D. (2019). Antimicrobial potentials of medicinal plant’s extract and their derived silver nanoparticles: A focus on honey bee pathogen. Saudi Journal of Biological Sciences, 26, 1815–1834.

    Article  CAS  Google Scholar 

  10. Khan, T. I., Hemalatha, S., & Waseem, M. (2020). Promising Role of nano-encapsulated drugs for spinal cord injury. Molecular Neurobiology, 57(4), 1978–1985. https://doi.org/10.1007/s12035-019-01862-9

    Article  CAS  PubMed  Google Scholar 

  11. Kohnen-Johannsen, K. L., & Kayser, O. (2019). Tropane alkaloids: Chemistry, pharmacology, biosynthesis and production. Molecules (Basel, Switzerland)., 24(4), 796. https://doi.org/10.3390/molecules24040796

    Article  CAS  PubMed Central  Google Scholar 

  12. Moodley, J., Krishna, S. B. N., Pillay, K., Sershen, N., & Govender, P. (2018). Green synthesis of silver nanoparticles from Moringa oleifera leaf extracts and its antimicrobial potential. Advances in Natural Sciences: Nanoscience and Nanotechnology, 9, 015011. https://doi.org/10.1088/2043-6254/aaabb2

    Article  CAS  Google Scholar 

  13. Mussin, J. E., Roldán, M. V., Rojas, F., Sosa, M., Pellegri, N., & Giusiano, G. (2019). Antifungal activity of silver nanoparticles in combination with ketoconazole against Malassezia furfur. AMB Express, 9(1), 131. https://doi.org/10.1186/s13568-019-0857-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nithin, J. C., Ranjani, S., & Hemalatha, S. (2022). Mimusops elengi flower-mediated green silver nanoparticles control Staphylococcus aureus and Acinetobacter baumannii. Applied Biochemistry and Biotechnology. https://doi.org/10.1007/s12010-022-03882-z . Advance online publication.

  15. Nizioł-Łukaszewska, Z., Furman-Toczek, D., Bujak, T., Wasilewski, T., & Hordyjewicz-Baran, Z. (2020). Moringa oleifera L. extracts as bioactive ingredients that increase safety of body wash cosmetics. Dermatology Research and Practice, 2020, 8197902. https://doi.org/10.1155/2020/8197902

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ranjani, S., Mohamed Sheik Meeran, S., Prakash, S. P., Mohammad, W., Kandasamy, R., & Hemalatha, S. (2020). Multi potent aromatic nano colloid: Synthesis, characterization and applications. AMB Express, 10(1), 168. https://doi.org/10.1186/s13568-020-01104-5

    Article  CAS  Google Scholar 

  17. Ranjani, S., Matheen, A., Antony Jenish, A., & Hemalatha, S. (2021a). Nanotechnology derived natural poly bio-silver nanoparticles as a potential alternate biomaterial to protect against human pathogen. Materials Letters, 304. https://doi.org/10.1016/j.matlet.2021.130555

  18. Ranjani, S., Shariq, A. M., Mubarak, A. D., Ramachandran, C., Senthil, K. N., & Hemalatha, S. (2021b). Toxicity assessment of silver nanoparticles synthesized using endophytic fungi against nosacomial infection. Inorganic and Nano-Metal Chemistry, 51(8), 1080–1085. https://doi.org/10.1080/24701556.2020.1814332

    Article  CAS  Google Scholar 

  19. Ranjani, S., Faridha, B. I., Santhoshini, J., Senthil, K. N., Ruckmani, K., & Hemalatha, S. (2021c). Mimosa pudica floral nanoparticles: A potent antibiotic resistance breaker. Inorganic and Nano-Metal Chemistry, 51(12), 1751–1758. https://doi.org/10.1080/24701556.2020.1852429

    Article  CAS  Google Scholar 

  20. Ranjani, S., Pradeep, P., Vimalkumar, U., Ramesh Kumar, V., & Hemalatha, S. (2021d). Pungent anti- infective nanocolloids manipulate growth, biofilm formation, and CTX-M-15 gene expression in pathogens causing vibriosis. Aquaculture International, 29, 859–869. https://doi.org/10.1007/s10499-021-00660-2

    Article  CAS  Google Scholar 

  21. Ranjani, S., Das, R., Shariq, A. M., Lalnunmawii, E., Senthilkumar, N., Ruckmani, K., & Hemalatha, S. (2021e). Myco-nanocolloids manipulate growth, biofilm formation and virulence genes in UTI causing E. coli. Inorganic and Nano-Metal Chemistry, 51(12), 1725–1734. https://doi.org/10.1080/24701556.2020.1852426

    Article  CAS  Google Scholar 

  22. Rasool, U., Sah, S. K., & Hemalatha, S. (2018). Growth inhibitory effect of oven dried copper nanoparticles (CUNPS) on drug resistant clinical isolates. Iranian Journal of Materials Science and Engineering, 15(3), 12–20 https://www.sid.ir/en/journal/ViewPaper.aspx?id=730600

    Google Scholar 

  23. Sah, S. K., Rasool, U., Ali, D., & Hemalatha, S. (2019). Efficacy of Andrographis paniculata against AmpC producing multi drug resistant E. coli. Biocatalysis and Agricultural Biotechnology, 21, 101139. https://doi.org/10.1016/j.bcab.2019.101139

    Article  Google Scholar 

  24. Sai Nivetha, S., Ranjani, S., & Hemalatha, S. (2022). Synthesis and application of silver nanoparticles using Cissus quadrangularis. Inorganic and Nano-Metal Chemistry, 52(1), 82–89. https://doi.org/10.1080/24701556.2020.1862219

    Article  CAS  Google Scholar 

  25. Shousha, W. G., Aboulthana, W. M., Salama, A. H., Saleh, M. H., & Essawy, E. A. (2019). Evaluation of biological activity of Moringa oleifera leaves extract after incorporating silver nanoparticles, in vitro study. Bulletin of the National Research Centre, 43, 212.

    Article  Google Scholar 

  26. Win, T. T., Khan, S., & Fu, P. (2020). Fungus – (Alternaria sp.) Mediated silver nanoparticles synthesis, characterization and screening of antifungal activity against some phytopathogens. Journal of Nanotechnology, 2020(9), 8828878. https://doi.org/10.1155/2020/8828878

    Article  CAS  Google Scholar 

  27. Zulfiqar, F., Younis, A., Finnegan, P. M., & Ferrante, A. (2020). Comparison of soaking corms with Moringa leaf extract alone or in combination with synthetic plant growth regulators on the growth, physiology and vase life of sword lily. Plants (Basel, Switzerland), 9(11), 1590. https://doi.org/10.3390/plants9111590

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to B.S. Abdur Rahman Institute of Science and Technology, Chennai, for providing research facilities in School of Life Sciences. The authors also gratefully acknowledge the Ministry of Science and Technology, Department of Science and Technology (KIRAN Division) (GoI), New Delhi (ref no. DST/WOS-B/2018/1583-HFN (G)) and ASEAN University network (AUN)/Southeast Asia Engineering Education Development Network (SEED)/Japan International Cooperation Agency (JICA) SPRAC (SN042/MI.KU/2020).

Funding

This study is supported by the Ministry of Science and Technology, Department of Science and Technology (KIRAN Division) (GoI), New Delhi (ref no. DST/WOS-B/2018/1583-HFN (G)) and ASEAN University Network (AUN)/Southeast Asia Engineering Education Development Network (SEED)/Japan International Cooperation Agency (JICA) SPRAC (SN042/MI.KU/2020).

Author information

Authors and Affiliations

Authors

Contributions

SH conceived and designed research. AJ and SR conducted the experiments. SH analyzed the data. All authors wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to S. Hemalatha.

Ethics declarations

Ethics Approval

Not applicable

Consent to Participate

Not applicable

Consent for Publication

All authors read and approved the manuscript for publication.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jenish, A., Ranjani, S. & Hemalatha, S. Moringa oleifera Nanoparticles Demonstrate Antifungal Activity Against Plant Pathogenic Fungi. Appl Biochem Biotechnol 194, 4959–4970 (2022). https://doi.org/10.1007/s12010-022-04007-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04007-2

Keywords

Navigation