Skip to main content

Advertisement

Log in

Preparation of Metal-Loaded ZSM-5 Zeolite Catalyst and Its Catalytic Effect on HMF Production from Biomass

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This research work presented the preparation of metal-loading ZSM-5 zeolite catalyst by loading Cu and Cr ions into the ZSM-5 zeolite particles using ion exchange method. Technical conditions of ion exchange processes were investigated to find suitable process for preparation of modified zeolite. The as-obtained zeolite catalyst was then applied for the transformation reaction of biomass-derived glucose into 5-hydroxymethyl furfural (HMF). Glucose hydrolysate that achieved from enzymatic hydrolysis of rice straw was used as feedstock for transformation reaction using Cu-Cr/ZSM-5 catalyst. This metal-loading zeolite exhibited good catalytic activity for lignocellulosic conversion to HMF, a valuable renewable green chemical. The content of loading metals in the zeolite catalyst affected significantly on the HMF yield. Moreover, the influence of transformation conditions such as solvent, temperature, catalyst dosage, and reaction time was investigated. According to the results, the optimum condition leading to the highest yield of HMF of 49.5 ± 0.5% was established. The as-prepared Cu-Cr/ZSM-5 zeolite catalyst showed impressive performance and can be considered a promising catalyst for the transformation of biomass-derived glucose to HMF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Cundy, C. S., & Cox, P. A. (2003). The hydrothermal synthesis of zeolites: History and development from the earliest days to the present time. Chemical Reviews, 103(3), 663–701. https://doi.org/10.1021/cr020060i

  2. Hoang, P. H, Yoon, K. B., Kim, D. P. (2012). Synthesis of hierarchically porous zeolite A crystals with uniform particle size in a droplet microreactor. RSC Advances, 2(12), 5323–5328. https://doi.org/10.1039/c2ra20074k

  3. Fang, Y., & Hu, H. (2006). An ordered mesoporous aluminosilicate with completely crystalline zeolite wall structure. Journal of the American Chemical Society, 128(33), 10636–10637. https://doi.org/10.1021/ja061182l

  4. Tao, Y., Kanoh, H., Abrams, L., Kaneko, K. (2006). Mesopore-Modified Zeolites : Preparation , Characterization , and Applications. Chemical Review, 106(3), 896–910.

  5. Hoang, P. H., Chung, N. H., & Dien, L. Q. (2019). Porous ZSM-5 zeolite catalyst modified with sulfonic acid functional groups for hydrolysis of biomass. Journal of the Iranian Chemical Society, 16(10), 2203–2210. https://doi.org/10.1007/s13738-019-01692-5

  6. Hoang, P. H., Nhung, N. T., & Dien, L. Q. (2017). Synthesis of mesoporous Cr/ZSM-5 and W-Cr/ZSM-5 zeolite catalysts for oxidation of unsaturated fatty acid. AIP Advances, 7(10), 105311–105318. https://doi.org/10.1063/1.4986310

  7. Giannetto, G., Garcia, L., Papa, J., Yhez, F., García, L., Papa, J., Yánez, F., Goldwasser, M. R., Linares, C., Moronta, D., et al. (1997). Synthesis and characterization of [Cr, AI]-ZSM-5 zeolites. Zeolites, 19(2–3), 169–174. https://doi.org/10.1016/S0144-2449(97)00064-X

  8. Saux, C., Pierella, L. B. (2011). Studies on styrene selective oxidation to benzaldehyde catalyzed by Cr-ZSM-5: Reaction parameters effects and kinetics. Applied Catalysis A: General, 400(1–2), 117–121. https://doi.org/10.1016/j.apcata.2011.04.021

  9. Zhu, Z., Lu, G., Guo, Y., Guo, Y., Zhang, Z., Wang, Y., & Gong, X. Q. (2013). High performance and stability of the Pt-W/ZSM-5 catalyst for the total oxidation of propane: The role of tungsten. ChemCatChem, 5(8), 2495–2503. https://doi.org/10.1002/cctc.201300101

  10. Hoang, P. H., Van Don, B., & Chung, N. H. (2019). Cleavage of double bond using metal-loaded ZSM-5 zeolite catalysts for renewable biochemical application. Canadian Journal of Chemical Engineering, 97(5), 1086–1091. https://doi.org/10.1002/cjce.23307

  11. Anggoro, D. D., & Amin, N. A. S. (2006). Methane to Liquid Hydrocarbons over Tungsten-ZSM-5 and Tungsten Loaded Cu/ZSM-5 Catalysts. Journal of Natural Gas Chemistry, 15(4), 340–347. https://doi.org/10.1016/S1003-9953(07)60016-4

  12. Neumann, G. T., & Hicks, J. C. (2012). Novel hierarchical cerium-incorporated MFI zeolite catalysts for the catalytic fast pyrolysis of lignocellulosic biomass. ACS Catalysis, 2(4), 642–646. https://doi.org/10.1021/cs200648q

  13. Chheda, J. N., Román-Leshkov, Y., & Dumesic, J. A. (2007). Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono- and poly-saccharides. Green Chemistry, 9(4), 342–350. https://doi.org/10.1039/b611568c

  14. Gallezot, P. (2012). Conversion of biomass to selected chemical products. Chemical Society Reviews, 41(4), 1538–1558. https://doi.org/10.1039/c1cs15147a

  15. Cai, C. M., Nagane, N., Kumar, R., & Wyman, C. E. (2014). Coupling metal halides with a co-solvent to produce furfural and 5-HMF at high yields directly from lignocellulosic biomass as an integrated biofuels strategy. Green Chemistry, 16(8), 3819–3829. https://doi.org/10.1039/c4gc00747f

  16. Hoang, P. H., & Cuong, T. D. (2021). Simultaneous Direct Production of 5-Hydroxymethylfurfural (HMF) and Furfural from Corncob Biomass Using Porous HSO3-ZSM-5 Zeolite Catalyst. Energy and Fuels, 35(1), 546–551. https://doi.org/10.1021/acs.energyfuels.0c03431

  17. Hu, L., Wu, Z., Xu, J., Sun, Y., Lin, L., & Liu, S. (2014). Zeolite-promoted transformation of glucose into 5-hydroxymethylfurfural in ionic liquid. Chemical Engineering Journal, 244, 137–144. https://doi.org/10.1016/j.cej.2014.01.057

  18. Hoang, P. H., Dat, N. M., Cuong, T. D., & Tung, D. T. (2020). Production of 5-hydroxymethylfurfural (HMF) from rice-straw biomass using a HSO3-ZSM-5 zeolite catalyst under assistance of sonication. RSC Advances, 10(23), 13489–13495. https://doi.org/10.1039/d0ra02037k

  19. Su, Y., Brown, H. M., Huang, X., dong Zhou, X., Amonette, J. E., Zhang, Z. C. (2009). Single-step conversion of cellulose to 5-hydroxymethylfurfural (HMF), a versatile platform chemical. Applied Catalysis A: General, 361(1–2), 117–122. https://doi.org/10.1016/j.apcata.2009.04.002

  20. Quang Dien, D. T. H. LE, Phuong, N.T. M., Hoang, P. H. (2015). Efficient Pretreatment of Vietnamese Rice Straw by Soda and Sulfate Cooking Methods for Enzymatic Saccharification. Applied Biochemistry Biotechnology, 175(3), 1536–1547.

  21. Phuong, N. T. M., Hoang, P. H., Dien, L. Q., & Hoa, D. T. (2017). Optimization of sodium sulfide treatment of rice straw to increase the enzymatic hydrolysis in bioethanol production. Clean Technologies Environmental Policy, 19(5), 1313–1322. https://doi.org/10.1007/s10098-016-1329-2

  22. Chung, N. H., Oanh, V. T., Thoa, L. K., & Hoang, P. H. (2020). Catalytic Conversion of Glucose into 5-Hydroxymethyl Furfural Over Cu–Cr/ZSM-5 Zeolite. Catalysis Letters, 150(1), 170–177. https://doi.org/10.1007/s10562-019-02922-4

  23. Zhou, C., Zhao, J., Yagoub, A. E. G. A., Ma, H., Yu, X., Hu, J., Bao, X., & Liu, S. (2017). Conversion of glucose into 5-hydroxymethylfurfural in different solvents and catalysts: Reaction kinetics and mechanism. Egyptian Journal of Petroleum, 26(2), 477–487. https://doi.org/10.1016/j.ejpe.2016.07.005

  24. Mukherjee, A., Dumont, M. J., Raghavan, V. (2015). Sustainable production of hydroxymethylfurfural and levulinic acid : Challenges and opportunities. Biomass and Bioenergy, 72, 143–183. https://doi.org/10.1016/j.biombioe.2014.11.007

  25. Jiménez-Morales, I., Teckchandani-Ortiz, A., Santamaría-González, J., Maireles-Torres, P., & Jiménez-López, A. (2014). Selective dehydration of glucose to 5-hydroxymethylfurfural on acidic mesoporous tantalum phosphate. Applied Catalysis B: Environmental, 144(1), 22–28. https://doi.org/10.1016/j.apcatb.2013.07.002

  26. Li, J., Ma, Y., Wang, L., Song, Z., Li, H., Wang, T., Li, H., & Eli, W. (2015). Catalytic Conversion of Glucose into 5-Hydroxymethylfurfural by Hf(OTf)4 Lewis Acid in Water. Catalysts, 6(1), 1. https://doi.org/10.3390/catal6010001

  27. Yu, I. K. M., Tsang, D. C. W., Chen, S. S., Wang, L., Hunt, A. J., Sherwood, J., De Oliveira Vigier, K., Jérôme, F., Ok, Y. S., Poon, C. S. (2017). Polar aprotic solvent-water mixture as the medium for catalytic production of hydroxymethylfurfural (HMF) from bread waste. Bioresource Technology, 245, 456–462. https://doi.org/10.1016/j.biortech.2017.08.170

  28. Amarasekara, A. S., Williams, L. D., & Ebede, C. C. (2008). Mechanism of the dehydration of D -fructose to 5-hydroxymethylfurfural in dimethyl sulfoxide at 150 °C : an NMR study. Carbohydrate Research, 343(18), 3021–3024. https://doi.org/10.1016/j.carres.2008.09.008

Download references

Funding

This research is funded by the Hanoi University of Science and Technology (HUST) under project number T2020-TĐ-005.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Thai Dinh Cuong and Phan Huy Hoang. The first draft of the manuscript was written by Thai Dinh Cuong and all authors commented on the previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Phan Huy Hoang.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoang, P.H., Cuong, T.D. Preparation of Metal-Loaded ZSM-5 Zeolite Catalyst and Its Catalytic Effect on HMF Production from Biomass. Appl Biochem Biotechnol 194, 4985–4998 (2022). https://doi.org/10.1007/s12010-022-03998-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03998-2

Keywords

Navigation