Skip to main content
Log in

Identification of Antigenic Properties of Acinetobacter baumannii Proteins as Novel Putative Vaccine Candidates Using Reverse Vaccinology Approach

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Multidrug-resistant Acinetobacter baumannii (A. baumannii) infections are becoming more prevalent all over the world. As a cost-effective and preventative method, vaccination seems to be required against this bacterium. In the present study, subtractive proteomics along with reverse vaccinology approaches was used to predict suitable therapeutics against A. baumannii. Using the Vaxign online tool, we studied over 35 genomes of A. baumannii strains and chose outer membrane and secreted proteins of A. baumannii 1656–2 as possible vaccine candidates. Then, investigations were performed on the immunogenicity, antigenic characteristics, physicochemical properties, B-cell and MHC class I, and MHC class II molecules epitope densities of proteins. After optimizing the codon of the proteins, the pcDNA3.1( +) expression construct was designed and the immunogenicity, allergenicity, and physicochemical properties of the vaccine construct were predicted. Hcp and OmpC proteins were predicted as extracellular and outer membrane proteins, respectively. These proteins interact with 10 other proteins to form a network of protein interactions with virulence properties. Immunoassays of Hcp and OmpC proteins showed antigenicity of 0.88 and 0.79, respectively. These proteins have 5 structural cell epitope points and 5 linear B epitope points. They are also able to bind to different HLA alleles of MCH class I/class II as selected immunogenic proteins and designed non-allergenic structures with solubility of 0.650 and immunogenicity score of 0.91. The results of this “in silico” study indicate high specificity and the development of a significant humoral and cellular immune response. It can be concluded that the Hcp and OmpC dual vaccine construct is one of the promising candidates against A. baumannii. The findings of this “in silico” study show excellent specificity and the emergence of a substantial humoral and cellular immune response. This is a computer-based study that needs to be tested in vitro and in vivo to corroborate the conclusions of the vaccine design procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Longo, F., Vuotto, C., & Donelli, G. (2014). Biofilm formation in Ab. New Microbiologica, 37(2), 119–127.

    CAS  PubMed  Google Scholar 

  2. Wang, X., & Qin, L. J. (2019). A review on Ab. Journal of Acute Disease, 8(1), 16.

    Google Scholar 

  3. Morris, F. C., Dexter, C., Kostoulias, X., Uddin, M. I., & Peleg, A. Y. (2019). The mechanisms of disease caused by Ab. Frontiers in microbiology, 10, 1601.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zeighami, H., Valadkhani, F., Shapouri, R., Samadi, E., & Haghi, F. (2019). Virulence characteristics of multidrug resistant biofilm forming Ab isolated from intensive care unit patients. BMC infectious diseases, 19(1), 1–9.

    Article  CAS  Google Scholar 

  5. Gharaghie, T. P., Beiranvand, S., Riahi, A., Badmasti, F., Shirin, N. J., Mirzaie, A., Elahianfar, Y., Ghahari, S., Ghahari, S., Pasban, K., & Hajrasoliham, S. (2022). Fabrication and characterization of thymol‐loaded chitosan nanogels: Improved antibacterial and anti‐biofilm activities with negligible cytotoxicity. Chemistry & Biodiversity, 19(3), e202100426.

  6. Samsudin, F., Ortiz-Suarez, M. L., Piggot, T. J., Bond, P. J., & Khalid, S. (2016). OmpA: A flexible clamp for bacterial cell wall attachment. Structure, 24(12), 2227–2235.

    Article  CAS  PubMed  Google Scholar 

  7. Ferenci, T., & Phan, K. (2015). How porin heterogeneity and trade-offs affect the antibiotic susceptibility of Gram-negative bacteria. Genes, 6(4), 1113–1124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Galdiero, S., Falanga, A., Cantisani, M., Tarallo, R., Della Pepa, M. E., D’Oriano, V., & Galdiero, M. (2012). Microbe-host interactions: structure and role of Gram-negative bacterial porins. Current Protein and Peptide Science, 13(8), 843–854.

    Article  CAS  PubMed  Google Scholar 

  9. Darcan, C. (2012). Expression of OmpC and OmpF porin proteins and survival of Escherichia coli under photooxidative stress in Black Sea water. Aquatic Biology, 17(2), 97–105.

    Article  Google Scholar 

  10. Arockiasamy, A., & Krishnaswamy, S. (2000). Purification of integral outer-membrane protein OmpC, a surface antigen from Salmonella typhi for structure–function studies: A method applicable to enterobacterial major outer-membrane protein. Analytical Biochemistry, 283(1), 64–70.

    Article  CAS  PubMed  Google Scholar 

  11. Zawawi, A., Forman, R., Smith, H., Mair, I., Jibril, M., Albaqshi, M. H., Brass, A., Derrick, J. P., & Else, K. J. (2020). In-Silico design of a T-cell epitope vaccine candidate for parasitic helminth infection. PLoS pathogens, 16(3), e1008243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pérez-Toledo, M., Valero-Pacheco, N., Pastelin-Palacios, R., Gil-Cruz, C., Perez-Shibayama, C., Moreno-Eutimio, M. A., Becker, I., Pérez-Tapia, S. M., Arriaga-Pizano, L., Cunningham, A. F., & Isibasi, A. (2017). Salmonella Typhi porins OmpC and OmpF are potent adjuvants for T-dependent and T-independent antigens. Frontiers in immunology, 8, 230.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Zoued, A., Brunet, Y. R., Durand, E., Aschtgen, M. S., Logger, L., Douzi, B., Journet, L., Cambillau, C., & Cascales, E. (2014). Architecture and assembly of the Type VI secretion system. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1843(8), 1664–1673.

    Article  CAS  Google Scholar 

  14. Cascales, E., & Cambillau, C. (2012). Structural biology of type VI secretion systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1592), 1102–1111.

    Article  CAS  Google Scholar 

  15. Laxminarayan, R., Duse, A., Wattal, C., Zaidi, A. K., Wertheim, H. F., Sumpradit, N., Vlieghe, E., Hara, G. L., Gould, I. M., Goossens, H., & Greko, C. (2013). Antibiotic resistance—The need for global solutions. The Lancet infectious diseases, 13(12), 1057–1098.

    Article  PubMed  Google Scholar 

  16. Afrough, B., Dowall, S., & Hewson, R. (2019). Emerging viruses and current strategies for vaccine intervention. Clinical & Experimental Immunology, 196(2), 157–166.

    Article  CAS  Google Scholar 

  17. Bazmara, H., Rasooli, I., Jahangiri, A., Sefid, F., Astaneh, S. D. A., & Payandeh, Z. (2019). Antigenic properties of iron regulated proteins in Ab: An in-silico approach. International Journal of Peptide Research and Therapeutics, 25(1), 205–213.

    Article  CAS  Google Scholar 

  18. Leow, C. Y., Kazi, A., Ismail, C. M. K. H., Chuah, C., Lim, B. H., Leow, C. H., & Singh, K. K. B. (2020). Reverse vaccinology approach for the identification and characterization of outer membrane proteins of Shigella flexneri as potential cellular-and antibody-dependent vaccine candidates. Clinical and experimental vaccine research, 9(1), 15–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nezafat, N., Eslami, M., Negahdaripour, M., Rahbar, M. R., & Ghasemi, Y. (2017). Designing an efficient multi-epitope oral vaccine against Helicobacter pylori using immunoinformatics and structural vaccinology approaches. Molecular BioSystems, 13(4), 699–713.

    Article  CAS  PubMed  Google Scholar 

  20. Habibi, N., Hashim, S. Z. M., Norouzi, A., & Samian, M. R. (2014). A review of machine learning methods to predict the solubility of overexpressed recombinant proteins in Escherichia coli. BMC Bioinformatics, 15(1), 1–16.

    Article  Google Scholar 

  21. Sadat, S. A. (2018). The inhibitory effects of silver nanoparticles on bap gene expression in antibiotic-resistant Acientobacter bumanni isolates using real-time PCR. Journal of Ilam University of Medical Sciences, 26(4), 175–185.

    Article  Google Scholar 

  22. Gul, S., Ahmad, S., Ullah, A., Ismail, S., Khurram, M., Tahir ul Qamar, M., Hakami, A. R., Alkhathami, A. G., Alrumaihi, F., & Allemailem, K. S. (2022). Designing a recombinant vaccine against Providencia rettgeri using immunoinformatics approach. Vaccines, 10, 189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dar, H. A., Zaheer, T., Shehroz, M., Ullah, N., Naz, K., Muhammad, S. A., Zhang, T., & Ali, A. (2019). Immunoinformatics-aided design and evaluation of a potential multi-epitope vaccine against Klebsiella pneumoniae. Vaccines, 7(3), 88.

    Article  CAS  PubMed Central  Google Scholar 

  24. Moriel, D. G., Beatson, S. A., Wurpel, D. J., Lipman, J., Nimmo, G. R., Paterson, D. L., & Schembri, M. A. (2013). Identification of novel vaccine candidates against multidrug-resistant Acinetobacter baumannii. PLoS ONE, 8(10), e77631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Solanki, V., & Tiwari, V. (2018). Subtractive proteomics to identify novel drug targets and reverse vaccinology for the development of chimeric vaccine against Acinetobacter baumannii. Scientific reports., 8(1), 1–9.

    Article  CAS  Google Scholar 

  26. Brunet, Y. R., Hénin, J., Celia, H., & Cascales, E. (2014). Type VI secretion and bacteriophage tail tubes share a common assembly pathway. EMBO reports, 15(3), 315–321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jalali, M., Nadoushan, M. J., Rasooli, I., Jahangiri, A., & Dervish, S. (2014). Immunogenicity of amino acid region 7601–8140 in biofilm associated protein of Ab. Pathobiology Research, 16(4), 15–26.

    Google Scholar 

  28. Lin, L., Tan, B., Pantapalangkoor, P., Ho, T., Hujer, A. M., Taracila, M. A., Bonomo, R. A., & Spellberg, B. (2013). Ab rOmpA vaccine dose alters immune polarization and immunodominant epitopes. Vaccine, 31(2), 313–318.

    Article  CAS  PubMed  Google Scholar 

  29. Greco, T. M., & Cristea, I. M. (2017). Proteomics tracing the footsteps of infectious disease. Molecular & Cellular Proteomics, 16(4), S5–S14.

    Article  CAS  Google Scholar 

  30. Zheng, M., & Song, L. (2020). Novel antibody epitopes dominate the antigenicity of spike glycoprotein in SARS-CoV-2 compared to SARS-CoV. Cellular & molecular immunology, 17(5), 536–538.

    Article  CAS  Google Scholar 

  31. Rakib, A., Sami, S. A., Mimi, N. J., Chowdhury, M. M., Eva, T. A., Nainu, F., Paul, A., Shahriar, A., Tareq, A. M., Emon, N. U., & Chakraborty, S. (2020). Immunoinformatics-guided design of an epitope-based vaccine against severe acute respiratory syndrome coronavirus 2 spike glycoprotein. Computers in biology and medicine, 124, 103967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu, W., & Chen, Y. H. (2005). High epitope density in a single protein molecule significantly enhances antigenicity as well as immunogenicity: A novel strategy for modern vaccine development and a preliminary investigation about B cell discrimination of monomeric proteins. European journal of immunology, 35(2), 505–514.

    Article  CAS  PubMed  Google Scholar 

  33. Blanco, E., Cubillos, C., Moreno, N., Bárcena, J., de la Torre, B.G., Andreu, D., & Sobrino, F. (2013). B epitope multiplicity and B/T epitope orientation influence immunogenicity of foot-and-mouth disease peptide vaccines. Clinical and Developmental Immunology, 2013, 475960.

  34. Clarke, B. E., Newton, S. E., Carroll, A. R., Francis, M. J., Appleyard, G., Syred, A. D., Highfield, P. E., Rowlands, D. J., & Brown, F. (1987). Improved immunogenicity of a peptide epitope after fusion to hepatitis B core protein. Nature, 330(6146), 381–384.

    Article  CAS  PubMed  Google Scholar 

  35. Delany, I., Rappuoli, R., & Seib, K. L. (2013). Vaccines, reverse vaccinology, and bacterial pathogenesis. Cold Spring Harbor perspectives in medicine, 3(5), a012476.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Dalsass, M., Brozzi, A., Medini, D., & Rappuoli, R. (2019). Comparison of open-source reverse vaccinology programs for bacterial vaccine antigen discovery. Frontiers in immunology, 10, 113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Moriel, D. G., Beatson, S. A., Wurpel, D. J., Lipman, J., Nimmo, G. R., Paterson, D. L., & Schembri, M. A. (2013). Identification of novel vaccine candidates against multidrug-resistant Ab. PLoS ONE, 8(10), e77631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ansari, H., Doosti, A., Kargar, M., Bijanzadeh, M., & Jaafarinia, M. (2018). Cloning of ompA gene from Ab into the eukaryotic expression vector pBudCE4. 1 as DNA vaccine. Indian journal of microbiology, 58(2), 174–181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Luna, B. M., Yan, J., Reyna, Z., Moon, E., Nielsen, T. B., Reza, H., Lu, P., Bonomo, R., Louie, A., Drusano, G., & Bulitta, J. (2019). Natural history of Ab infection in mice. PLoS ONE, 14(7), e0219824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Huang, T., Zhao, K., Zhang, Z., Tang, C., Zhang, X., & Yue, B. (2016). DNA vaccination based on pyolysin co-immunized with IL-1β enhances host antibacterial immunity against Trueperella pyogenes infection. Vaccine, 34(30), 3469–3477.

    Article  CAS  PubMed  Google Scholar 

  41. Beiranvand, S., Doosti, A., & Mirzaei, S. A. (2021). Putative novel B-cell vaccine candidates identified by reverse vaccinology and genomics approaches to control Ab serotypes. Infection, Genetics and Evolution., 96, 105138.

    Article  CAS  PubMed  Google Scholar 

  42. Samak T.,  Gunter D., &  Wang Z. (2012). “Prediction of protein solubility in E. coli,” 2012 IEEE 8th International Conference on E-Science, 2012, pp. 1–8, https://doi.org/10.1109/eScience.2012.6404416.

  43. Gui, M., Song, W., Zhou, H., Xu, J., Chen, S., Xiang, Y., & Wang, X. (2017). Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding. Cell research., 27(1), 119–129.

    Article  CAS  PubMed  Google Scholar 

  44. Yan, R., Zhang, Y., Li, Y., Xia, L., Guo, Y., & Zhou, Q. (2020). Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science, 367(6485), 1444–1448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Piri-Gharaghie, T. (2021). Polycystic ovary syndrome and genetic factors influencing its development: A review article.

  46. Piri-Gharaghie, T., Jegargoshe-Shirin, N., Saremi-Nouri, S., Khademhosseini, S. H., Hoseinnezhad-Lazarjani, E., Mousavi, A., Kabiri, H., Rajaei, N., Riahi, A., Farhadi-Biregani, A., & Fatehi-Ghahfarokhi, S. (2022). Effects of Imipenem-containing Niosome nanoparticles against high prevalence methicillin-resistant Staphylococcus Epidermidis biofilm formed. Science and Reports, 12(1), 5140. https://doi.org/10.1038/s41598-022-09195-9 PMID: 35332241.

    Article  CAS  Google Scholar 

  47. Negahdaripour, M., Nezafat, N., Eslami, M., Ghoshoon, M. B., Shoolian, E., Najafipour, S., Morowvat, M. H., Dehshahri, A., Erfani, N., & Ghasemi, Y. (2018). Structural vaccinology considerations for in silico designing of a multi-epitope vaccine. Infection, Genetics and Evolution, 58, 96–109.

    Article  PubMed  Google Scholar 

  48. Maleki, A., Russo, G., Parasiliti Palumbo, G. A., & Pappalardo, F. (2021). In silico design of recombinant multi-epitope vaccine against influenza A virus. BMC Bioinformatics, 22(14), 1–19.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the staff members of the Biotechnology Research Center of Islamic Azad University of Shahrekord Branch in Iran for their help and support.

Author information

Authors and Affiliations

Authors

Contributions

Tohid Piri-Gharaghie: Conceptualization, methodology, resources, writing—review and editing, supervision, funding acquisition. Abbas Doosti: Methodology, software, validation, formal analysis, writing—original draft. Seyed Abbas Mirzaei: Visualization, project administration.

Corresponding author

Correspondence to Abbas Doosti.

Ethics declarations

Ethical Approval

The study was approved by the Ethics Committee of Islamic Azad University of Shahrekord Branch in Iran [IR.IAU.SHK.REC.1400.046].

Consent to Participate

Not applicable.

Consent to Publish

The authors declare their complete consent to the publication of this manuscript.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piri-Gharaghie, T., Doosti, A. & Mirzaei, S.A. Identification of Antigenic Properties of Acinetobacter baumannii Proteins as Novel Putative Vaccine Candidates Using Reverse Vaccinology Approach. Appl Biochem Biotechnol 194, 4892–4914 (2022). https://doi.org/10.1007/s12010-022-03995-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03995-5

Keywords

Navigation