Skip to main content
Log in

Extraction of Chitosan with Different Physicochemical Properties from Cunninghamella echinulata (Thaxter) Thaxter for Biological Applications

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The conventional production of chitosan from crustaceans has many limitations. An attempt was made to optimize chitosan production from fungi. Soil fungi were isolated, identified, and screened for high glucosamine content. Among the fungal isolates tested, Cunninghamella echinulata showed high glucosamine content. The biomass production of C. echinulata was standardized under different growth parameters. The physicochemical characterization of derived chitosan isolates was distinctive and diverged as supported by the FT-IR, molecular mass distribution, degree of deacetylation, and crystallinity. Molecular mass distribution ranged from 1 to 9 mers. The degree of deacetylation was observed to be maximum in C6 (80.88%), which increased with the increase in alkali concentration. In the chitosan isolate, C1 was non-toxic to Vero cells up to 250 µg/mL. In the physicochemical and functional properties of chitosan isolate, C1 was found to be unique and diverse; further detailed investigations on this isolate might help to develop some biomaterials with improved biocompatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Abo Elsoud, M. M. (2021). Fungal chitin and chitosan. Encyclopedia of Mycology, 1, 205–217.

    Article  Google Scholar 

  2. Baxter, A., Dillon, M., Taylor, K. D., & Roberts, G. A. (1992). Improved method for i.r. determination of the degree of N-acetylation of chitosan. International Journal Of Biological Macromolecules, 14, 166–9.

    Article  CAS  PubMed  Google Scholar 

  3. Blumenthal, H. J., & Roseman, S. (1957). Quantitative estimation of chitin in fungi. Journal of Bacteriology, 74(2), 222–224.

  4. Carbonero, E. R., Gracher, A. H. P., Smiderle, F. R., Rosado, F. R., Sassaki, G. L., Gorin, P. A. J., & Iacomini, M. (2006). A β-glucan from the fruit bodies of edible mushrooms Pleurotus eryngii and Pleurotus ostreatoroseus. Carbohydrate Polymers, 66, 252–257. https://doi.org/10.1016/j.carbpol.2006.03.009

    Article  CAS  Google Scholar 

  5. Chen, W., & Chiou, R.Y.-Y. (1999). A modified chemical procedure for rapid determination of glucosamine and its application for estimation of mold growth in peanut kernels and koji. Journal of Agricultural and Food Chemistry, 47, 1999–2004. https://doi.org/10.1021/jf981049f

    Article  CAS  PubMed  Google Scholar 

  6. Crestini, C., Kovac, B., & Giovannozzi-Sermanni, G. (1996). Production and isolation of chitosan by submerged and solid-state fermentation from Lentinus edodes. Biotechnology and Bioengineering, 50, 207–210. https://doi.org/10.1002/bit.260500202

    Article  CAS  PubMed  Google Scholar 

  7. Domsch, K. H., Gams, W., & Anderson, T. (1981). Compendium of soil fungi advances in microbial physiology. 1:10003.

  8. Focher, B. (1992). Structural differences between chitin polymorphs and their precipitates from solutions - evidence from CP-MAS 13C. NMR. FT-IR and FT-Raman spectroscopy. Carbohydrate Polymers, 17, 97–102.

    Article  CAS  Google Scholar 

  9. Hu, K.-J., Yeung, K.-W., Ho, K.-P., & Hu, J.-L. (1999). rapid extraction of high-quality chitosan from mycelia of absidia glaUCA. Journal of Food Biochemistry, 23, 187–196. https://doi.org/10.1111/j.1745-4514.1999.tb00013.x

    Article  CAS  Google Scholar 

  10. Johns, J., & Rao, V. (2009). Thermal stability, morphology, and X-ray diffraction studies of dynamically vulcanized natural rubber/chitosan blends. Journal of Materials Science, 44, 4087–4094. https://doi.org/10.1007/s10853-009-3589-2

    Article  CAS  Google Scholar 

  11. Kittur, F. S., Vishu Kumar, A. B., Gowda, L. R., & Tharanathan, R. N. (2003). Chitosanolysis by a pectinase isozyme of Aspergillus niger - a non-specific activity. Carbohydrate Polymers, 53, 191–196. https://doi.org/10.1016/S0144-8617(03)00042-0

    Article  CAS  Google Scholar 

  12. Kumar, B. A. V., Varadaraj, M. C., & Tharanathan, R. N. (2007). Low molecular weight chitosan–preparation with the aid of pepsin, characterization, and its bactericidal activity. Biomacromolecules, 8, 566–572. https://doi.org/10.1021/bm060753z

    Article  CAS  PubMed  Google Scholar 

  13. Minke, R., & Blackwell, J. (1978). The structure of α-chitin. Journal of Molecular Biology, 120, 167–181. https://doi.org/10.1016/0022-2836(78)90063-3

    Article  CAS  PubMed  Google Scholar 

  14. Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65, 55–63. https://doi.org/10.1016/0022-1759(83)90303-4

    Article  CAS  PubMed  Google Scholar 

  15. Muzzarelli, R. A. A., Boudrant, J., Meyer, D., Manno, N., Demarchis, M., & Paoletti, M. G. (2012). Current views on fungal chitin/chitosan, human chitinases, food preservation, glucans, pectins and inulin: A tribute to Henri Braconnot, precursor of the carbohydrate polymers science, on the chitin bicentennial. Carbohydrate Polymers, 87, 995–1012. https://doi.org/10.1016/j.carbpol.2011.09.063

    Article  CAS  Google Scholar 

  16. Naghdi, M., Zamani, A., & Karimi, K. (2014). A sulfuric – lactic acid process for efficient purification of fungal chitosan with intact molecular weight. International Journal of Biological Macromolecules, 63, 158–162.

    Article  CAS  PubMed  Google Scholar 

  17. Nwe, N., Furuike, T., Osaka, I., Fujimori, H., Kawasaki, H., Arakawa, R., Tokura, S., Stevens, W. F., Kurozumi, S., & Takamori, Y. (2011). Laboratory scale production of 13C labeled chitosan by fungi Absidia coerulea and Gongronella butleri grown in solid substrate and submerged fermentation. Carbohydrate Polymers, 84, 743–750. https://doi.org/10.1016/j.carbpol.2010.06.023

    Article  CAS  Google Scholar 

  18. Nwe N, Stevens WF (2002) Production of fungal chitosan by solid substrate fermentation followed by enzymatic extraction 131–134

  19. Ottoy, M. H., Varum, K. M., Christensen, B. E., Anthonsen, M. W., & Smidsrod, O. (1996). Preparative and analytical size exclusion chromatography of chitosans. Carbohydrate polymers, 31, 253–261.

    Article  Google Scholar 

  20. Park, J. K., Chung, M. J., Choi, H. N., & Il, P. Y. (2011). Effects of the molecular weight and the degree of deacetylation of chitosan oligosaccharides on antitumor activity. International Journal of Molecular Sciences, 12, 266–277. https://doi.org/10.3390/ijms12010266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rinaudo, M. (2008). Main properties and current applications of some polysaccharides as biomaterials. Polymer International, 430, 397–430. https://doi.org/10.1002/pi.2378

    Article  CAS  Google Scholar 

  22. Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science, 31, 603–632. https://doi.org/10.1016/j.progpolymsci.2006.06.001

    Article  CAS  Google Scholar 

  23. Ruiz-Herrera J (1978) The distribution and quantitative importance of chitin in fungi. In R. A. A. Muzzarelli, & E. R. Pariser, Proceedings of the first . MIT Sea Grant Report MITSG78–7, Index No. -Dmb (pp. 11–21). Cambridge:No Title. In: international conference on chitin/chitosan. 78–307

  24. Scotti, C. T., Vergoignan, C., Feron, G., & Durand, A. (2001). Glucosamine measurement as indirect method for biomass estimation of Cunninghamella elegans grown in solid state cultivation conditions. Biochemical Engineering Journal, 7, 1–5. https://doi.org/10.1016/S1369-703X(00)00090-5

    Article  CAS  PubMed  Google Scholar 

  25. Sebastian, J., Rouissi, T., & Brar, S. K. (2020). Fungal chitosan: Prospects and challenges. Handbook of Chitin and Chitosan. Preparation and Properties, 1, 419–452. https://doi.org/10.1016/B978-0-12-817970-3.00014-6

    Article  Google Scholar 

  26. Seo, W. G., Pae, H. O., Kim, N. Y., Oh, G. S., Park, I. S., Kim, Y. H., Kim, Y. M., Lee, Y. H., Jun, C. D., & Chung, H. T. (2000). Synergistic cooperation between water-soluble chitosan oligomers and interferon-gamma for induction of nitric oxide synthesis and tumoricidal activity in murine peritoneal macrophages. Cancer letters, 159, 189–195. https://doi.org/10.1016/S0304-3835(00)00551-6

    Article  CAS  PubMed  Google Scholar 

  27. Shajahan A, Kaviyarasan V, Narayanan V, Ignacimuthu S (2018) Chitosan: A versatile biomaterial for the 21st century. Marine Polysaccharides 53–110https://doi.org/10.1201/9780429058929-4

  28. Shajahan A, Shankar S, Kaviyarasan V, Narayanan V (2011) Adsorption efficacy of chitosan nanoparticles from Cunnighamella elegans on RBB dye. International Conference on Green technology and environmental Conservation (GTEC-2011) 238–243 https://doi.org/10.1109/GTEC.2011.6167675

  29. Sitanggang, A. B., Sophia, L., & Wu, H. S. (2012). Aspects of glucosamine production using microorganisms. International Food Research Journal, 19, 393–404.

    CAS  Google Scholar 

  30. Sparringa, R. A., & Owens, J. D. (1999). Glucosamine content of tempe mould. Rhizopus oligosporus., 47, 153–157.

    CAS  Google Scholar 

  31. Tajdini F, Ali M, Nafissi-varcheh N, Ali M (2010) International journal of biological macromolecules production , physiochemical and antimicrobial properties of fungal chitosan from Rhizomucor miehei and Mucor racemosus. 47:180–183https://doi.org/10.1016/j.ijbiomac.2010.05.002

  32. Tan, S. C., Khor, E., Tan, T. K., & Wong, S. M. (1998). The degree of deacetylation of chitosan: Advocating the first derivative UV-spectrophotometry method of determination. Talanta, 45, 713–719.

    Article  CAS  PubMed  Google Scholar 

  33. Tan, S. C., Tan, T. K., Wong, S. M., & Khorb, E. (1996). The chitosan yield of zygomycetes at their optimum harvesting time. Carbohydrate Polymers, 30, 239–242.

    Article  CAS  Google Scholar 

  34. Tanner, S. S. F., Chanzy, H., & Vincendon, M. (1990). High-resolution solid-state carbon-13 nuclear magnetic resonance study of chitin. Macromolecules, 3583, 3576–3583. https://doi.org/10.1021/ma00217a008

    Article  Google Scholar 

  35. Tayel, A. A., Moussa, S. H., El-Tras, W. F., Elguindy, N. M., & Opwis, K. (2011). Antimicrobial textile treated with chitosan from Aspergillus niger mycelial waste. International journal of biological macromolecules, 49, 241–5. https://doi.org/10.1016/j.ijbiomac.2011.04.023

    Article  CAS  PubMed  Google Scholar 

  36. Vishu Kumar, A. B., Varadaraj, M. C., Lalitha, R. G., & Tharanathan, R. N. (2004). Low molecular weight chitosans Preparation with the aid of papain and characterization. Biochimica et Biophysica Acta (BBA) General Subjects, 1670, 137–146.

    Article  CAS  PubMed  Google Scholar 

  37. Wang, W., Du, Y., Qiu, Y., Wang, X., Hu, Y., Yang, J., Cai, J., & Kennedy, J. F. (2008). A new green technology for direct production of low molecular weight chitosan. Carbohydrate Polymers, 74, 127–132. https://doi.org/10.1016/j.carbpol.2008.01.025

    Article  CAS  Google Scholar 

  38. Warcup, J. H. (1950). The soil-plate method for isolation of fungi from soil. Nature, 166, 117–118. https://doi.org/10.1038/166117b0

    Article  CAS  PubMed  Google Scholar 

  39. Wessels JGH;, P. Mol, Sietsma JH&, Vermeulen (1990) Wall structure, wall growth, and fungal cell morphologenesis, In: Biochemistry of cell walls and Membranes in fungi. Springer-Verlag, Berlin

  40. White, S. A., Farina, P. R., & Fulton, I. (1979). Production and isolation of chitosan from Mucor rouxii. Applied and Environmental Microbiology, 38, 323–328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xia, W., Liu, P., & Liu, J. (2008). Advance in chitosan hydrolysis by non-specific cellulases. Bioresource Technology, 99, 6751–6762. https://doi.org/10.1016/j.biortech.2008.01.011

    Article  CAS  PubMed  Google Scholar 

  42. Zamani, A., Jeihanipour, A., Edebo, L., Niklasson, C., & Taherzadeh, M. J. (2008). Determination of glucosamine and N-acetyl glucosamine in fungal cell walls. Journal Of Agricultural And Food Chemistry, 56, 8314–8318. https://doi.org/10.1021/jf801478j

    Article  CAS  PubMed  Google Scholar 

  43. Zhang, H., Du, Y., Yu, X., Mitsutomi, M., & Aiba, S. I. (1999). Preparation of chitooligosaccharides from chitosan by a complex enzyme. Carbohydrate Research, 320, 257–260. https://doi.org/10.1016/S0008-6215(99)00154-8

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by University Grant Commission (UGC), New Delhi, India; National Research Foundation of Korea (2021R1I1A1A01057742).

Author information

Authors and Affiliations

Authors

Contributions

AS: conceptualization, data curation, formal analysis, investigation, methodology, visualization, writing—original draft, writing—review and editing. AS: data curation, formal analysis, investigation, methodology, writing—review and editing. KS: formal analysis, data curation. SE: formal analysis, data curation, software. M-HW: supervision, validation. VK: project administration, resources, supervision, validation, writing—review and editing.

Corresponding authors

Correspondence to Shajahan Azeez, Myeong-Hyeon Wang or Venkatesan Kaviyarasan.

Ethics declarations

Ethics Approval

This article does not contain any studies with animals or human participants.

Consent to Participate

The authors agreed to participate in this work.

Consent for Publication

The authors agreed to publish this work.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 31 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azeez, S., Sathiyaseelan, A., Jeyaraj, E.R. et al. Extraction of Chitosan with Different Physicochemical Properties from Cunninghamella echinulata (Thaxter) Thaxter for Biological Applications. Appl Biochem Biotechnol 195, 3914–3927 (2023). https://doi.org/10.1007/s12010-022-03982-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03982-w

Keywords

Navigation