Skip to main content
Log in

Restoration of the Indicator Properties of Whole-cell Luminescent Biosensors

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Whole-cell biosensors are widely used to produce medical diagnostic tests, but in the long term, they tend to lose their indicator properties. Consequently, it is crucial to find ways to restore these properties and prolong the shelf life of the tests. Here, we propose to use electromagnetic radiation with optimally selected parameters of frequency, power, and exposure time. The impact of radiation parameters on biosensor luminescence was studied as well as the effects of different types of radiation coming from laser sources (λ = 875 nm), a LED source (λ = 850 ÷ 890 nm), and microwave units (at frequencies 42.22, 53.53, 61.18 и 34 ÷ 38 GHz). IR treatment resulted in dose-dependent suppression of biosensor luminescence. The luminescence level when exposed to microwave radiation depends on the radiation time and frequency. Also, it has been found that optimal selection of the main radiation parameters enables to restore indicator properties partially lost by biosensors during storage. We explain the mechanism responsible for the sensitizing effect of radiation, which implies the polarization of solvent dipoles and changes in mobility of acceptor molecules. This, in turn, leads to a shift in the chemical equilibrium states and triggers a cascade of biochemical reactions that lead to restoration of the lost indicator properties of biosensors. The study of antagonistic activity has revealed that restored biosensors provide reliable test results after the expiration of their warranty period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Moraskie, M. et al. (2021). Microbial whole-cell biosensors: Current applications, challenges, and future perspectives. Biosensors & Bioelectronics 113359-113376 https://doi.org/10.1016/j.bios.2021.113359

  2. Berepiki, A., Kent, R., Machado, L. F., & Dixon, N. (2020). Development of high-performance whole cell biosensors aided by statistical modeling. ACS Synthetic Biology., 9(3), 576–589. https://doi.org/10.1021/acssynbio.9b00448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cai, S., et al. (2018). Engineering highly sensitive whole-cell mercury biosensors based on positive feedback loops from quorum-sensing systems. The Analyst, 143(3), 630–634. https://doi.org/10.1039/C7AN00587C

    Article  CAS  PubMed  Google Scholar 

  4. Kotlobay, A. A., Kaskova, Z. M., & Yampolsky, I. V. (2020). The palette of Luciferases Natural biotools for new applications in biomedicine. Acta Naturae, 12(2), 15–27. https://doi.org/10.32607/actanaturae.10967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Moraskie, M. et al. (2021). Microbial whole-cell biosensors: Current applications, challenges, and future perspectives. Biosensors & Bioelectronics 113359 https://doi.org/10.1016/j.bios.2021.113359

  6. Fahliyani, S.A., Rastegari, A.A., Yadav, A.N., & Yadav, N. (2020), In new and future developments in microbial biotechnology and bioengineering: Microbially derived biosensors for diagnosis, monitoring, and epidemiology for future biomedicine systems (Rastegari A.A.,ed), Elsevier, pp. 43–65. https://doi.org/10.1016/B978-0-12-820528-0.00005-3

  7. Dai, C., & Choi, S. (2013). Technology and applications of microbial biosensor. OJAB., 2, 83–93. https://doi.org/10.4236/ojab.2013.23011

    Article  CAS  Google Scholar 

  8. Khudyakova, A. V., et al. (2019). Estimation of the toxicity of a metal/carbon nanocomposite of copper by biotesting. Bulletin of the Russian Academy of Sciences, 46(10), 1359–1363. https://doi.org/10.1134/S1062359019100145

    Article  CAS  Google Scholar 

  9. Maksimova, A. V., Kuznetsova, M. V., & Demakov, V. A. (2016). The impact of synthetic nitriles on the morphology and viability of some bacterial species. Bulletin of the Russian Academy of Sciences, 43(6), 547–553.

    Article  CAS  Google Scholar 

  10. Zarubina, A. P., Gapochka, M. G., Novoselova, L. A., & Gapochka, L. D. (2013). Effect of low-intensity electromagnetic radiation on the toxicity of domestic wastewater tested with the “Ecolum” test system. Moscow Univ. Biol. Sci. Bull., 68(1), 49–52. https://doi.org/10.3103/S0096392512030108

    Article  Google Scholar 

  11. Bahadır, E. B., & Mustafa, K. S. (2015). Applications of commercial biosensors in clinical, food, environmental, and biothreat/biowarfare analyses. Analytical Biochemistry, 478, 107–120. https://doi.org/10.1016/j.ab.2015.03.011

    Article  CAS  PubMed  Google Scholar 

  12. Bilal, M., & Iqbal, H. M. (2019). Microbial-derived biosensors for monitoring environmental contaminants: Recent advances and future outlook. Process Safety and Environment Protection, 124, 8–17. https://doi.org/10.1016/j.psep.2019.01.032

    Article  CAS  Google Scholar 

  13. Chang, H. J., Voyvodic, P. L., Zúñiga, A., & Bonnet, J. (2017). Microbially derived biosensors for diagnosis, monitoring, and epidemiology. Microbial Biotechnology, 10(5), 1031–1035. https://doi.org/10.1111/1751-7915.12791

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kuznetsov, D. B., et al. (2017). Epitaxy of the bound water phase on hydrophilic surfaces of biopolymers as a key mechanism of microwave radiation effects on living objects. Colloids and Surfaces B, 154, 40–47. https://doi.org/10.1016/j.colsurfb.2017.03.014

    Article  CAS  Google Scholar 

  15. Kuznetsov, D. B., et al. (2019). Microwave radiation effects on the process of Escherichia coli cultivation. Microbiology and Biotechnology Letters, 47(3), 372–380. https://doi.org/10.4014/mbl.1810.10024

    Article  CAS  Google Scholar 

  16. Danilov, V. S., Zarubina, A. P., & Eroshnikov, G. E. (2002). Sensory bioluminescent systems based on the lux-operons of different species of Luminescent Bacteria. Vestn. Moscow un-that. Ser. Biology, 3, 20–24.

    Google Scholar 

  17. Zarubina, A.P., Gapochka, M.G., Novoselova, L.A., & Gapochka, L.D. (2012). Biotesting of influence of the electromagnetic field of low intensity on the toxicity of the sewage water by the test system «Ecolum». Moscow Univ. Biol.Sci. Bull. 3, 43. 39–43. https://vestnik-bio-msu.elpub.ru/jour/article/view/63?locale=en_US

  18. Neschislyaev, V. A., Pshenichnov, R. A., Archakova, E. G., Chistokhina, L. P., & Fadeeva, I. V. (2002). Method of assay of antagonistic activity of probiotics. Patent of Russia, 2187801(C2), 1–7.

    Google Scholar 

  19. Stenishchev, I. V., & Basharin, A. A. (2017). Toroidal response in all-dielectric metamaterials based on water. Science and Reports, 7(1), 1–9. https://doi.org/10.1038/s41598-017-07399-y

    Article  CAS  Google Scholar 

  20. Bordonsky, G. S., Orlov, A. O., & Schegrina, K. A. (2017). Dielectric losses in supercooled pore water at a frequency of 34 GHz. RAQE, 59(10), 812–820. https://doi.org/10.1007/s11141-017-9750-x

    Article  Google Scholar 

  21. Carlson, S., Brünig, F. N., Loche, P., Bonthuis, D. J., & Netz, R. R. (2020). Exploring the absorption spectrum of simulated water from MHz to the infrared. Journal of Physical Chemistry A, 124(27), 5599–5605. https://doi.org/10.1021/acs.jpca.0c04063

    Article  CAS  PubMed  Google Scholar 

  22. Andryieuski, A., Kuznetsova, S. M., Zhukovsky, S. V., Kivshar, Y. S., & Lavrinenko, A. V. (2015). Water: Promising opportunities for tunable all-dielectric electromagnetic metamaterials. Science and Reports, 5, 13535. https://doi.org/10.1038/srep13535

    Article  CAS  Google Scholar 

  23. Hartmann, S., et al. (1999). NIH shift in flavin-dependent monooxygenation: Mechanistic studies with 2-aminobenzoyl-CoA monooxygenase/reductase. PNAS, 96(14), 7831–7836. https://doi.org/10.1073/pnas.96.14.7831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Romero, E., et al. (2018). Same substrate, many reactions: Oxygen activation in flavoenzymes. Chemical Reviews, 118(4), 1742–1769. https://doi.org/10.1021/acs.chemrev.7b00650

    Article  CAS  PubMed  Google Scholar 

  25. Tinikul, R., & Chaiyen, P. (2016). Structure, mechanism, and mutation of bacterial luciferase. Adv Biochem. Eng. Biotechnol. Adv. Biochem. Eng. Biotechnol., 154, 47–74. https://doi.org/10.1007/10_2014_281

    Article  CAS  PubMed  Google Scholar 

  26. Campbell, Z. T., Weichsel, A., Montfort, W. R., & Baldwin, T. O. (2009). Crystal structure of the bacterial luciferase/flavin complex provides insight into the function of the β subunit. Biochemistry, 48(26), 6085–6094. https://doi.org/10.1021/bi900003t

    Article  CAS  PubMed  Google Scholar 

  27. Schurr, J. M., Fujimoto, B. S., Huynh, L., & Chiu, D. T. (2013). A theory of macromolecular chemotaxis. The Journal of Physical Chemistry B, 117(25), 7626–7652. https://doi.org/10.1021/jp302587d

    Article  CAS  PubMed  Google Scholar 

  28. Schurr, J. M. (2013). Phenomena associated with gel–water interfaces. Analyses and alternatives to the long-range ordered water hypothesis. The Journal of Physical Chemistry. B, 117(25), 7653–7674. https://doi.org/10.1021/jp302589y

    Article  CAS  PubMed  Google Scholar 

  29. Elton, D. C., Spencer, P. D., Riches, J. D., & Williams, E. D. (2020). Exclusion zone phenomena in water—A critical review of experimental findings and theories. International Journal of Molecular Sciences, 21(14), 5041–5054. https://doi.org/10.3390/ijms21145041

    Article  CAS  PubMed Central  Google Scholar 

  30. Tinikul, R., Chunthaboon, P., Phonbuppha, J., & Paladkong, T. (2020). Bacterial luciferase: Molecular mechanisms and applications. The Enzymes., 47, 427–455. https://doi.org/10.1016/bs.enz.2020.06.001

    Article  CAS  PubMed  Google Scholar 

  31. Zheng, J. M., & Pollack, G. H. (2003). Long-range forces extending from polymer-gel surfaces. Physical Review E, 68(3), 031408–031414. https://doi.org/10.1103/PhysRevE.68.031408

    Article  CAS  Google Scholar 

  32. Chai, B., Yoo, H., & Pollack, G. H. (2009). Effect of radiant energy on near-surface water. The Journal of Physical Chemistry B, 113(42), 13953–13958. https://doi.org/10.1021/jp908163w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pollack, G. H. (2015). Cell electrical properties: Reconsidering the origin of the electrical potential. Cell Biology International, 39(3), 237–242. https://doi.org/10.1002/cbin.10382

    Article  PubMed  Google Scholar 

  34. Ogata, Y., Kawashima, Y., Takahashi, K., & Tachikawa, M. (2015). Theoretical vibrational spectra of OH−(H2O)2: The effect of quantum distribution and vibrational coupling. Physical Chemistry Chemical Physics: PCCP, 17, 25505–25515. https://doi.org/10.1039/C5CP03632A

    Article  CAS  PubMed  Google Scholar 

  35. Gorlova, O. et al. (2016). Characterization of the primary hydration shell of the hydroxide ion with H2 tagging vibrational spectroscopy of the OH−⋅(H2O) n= 2, 3 and OD−⋅(D2O) n= 2, 3 clusters. The Journal of Physical Chemistry. 145(13), 134304–1–134304–8. https://doi.org/10.1063/1.4962912

  36. Lee, J., Müller, F., & Visser, A. J. (2019). The sensitized bioluminescence mechanism of bacterial luciferase. Photochemistry and Photobiology, 95(3), 679–704. https://doi.org/10.1111/php.13063

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

D.B. Kuznetsov: Conceptualization, Methodology, Data curation, Formal analysis, Project administration, Writing original draft, Visualization. A.Yu. Mironov and V.A. Neschislyaev: Conceptualization, Data curation, Methodology, Formal analysis, Writing—review & editing. I.L. Volkhin: Writing—Review & Editing, Formal Analysis. E.V. Orlova: Formal analysis, Supervision, Project administration. A.D. Shilina: Validation, Data curation, Visualization.

Corresponding author

Correspondence to D. B. Kuznetsov.

Ethics declarations

Consent for Publication

All authors give their consent to the publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, D.B., Mironov, A.Y., Neschislyaev, V.A. et al. Restoration of the Indicator Properties of Whole-cell Luminescent Biosensors. Appl Biochem Biotechnol 194, 4081–4092 (2022). https://doi.org/10.1007/s12010-022-03977-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03977-7

Keywords

Navigation