Skip to main content

Advertisement

Log in

Alpinetin: a Dietary Flavonoid with Diverse Anticancer Effects

  • Review Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Cancer is  a global burden and mechanistically complex disease with a plethora of genetic, physiological, metabolic, and environmental alterations. The development of dietary nutraceuticals into cancer chemotherapeutics has emerged as a new paradigm in cancer treatment. Alpinetin (ALPI) is a novel flavonoid component of multiple edible and medicinal plants and possesses a wide range of biological and pharmacological activities including antibacterial, anti-hemostatic, anti-oxidative, anti-hepatotoxic, stomachic, immunosuppressive, and anti-inflammatory. Recently, ALPI has been reported as a bioactive dietary nutraceutical with promising anticancer activity in various human cancers through multiple mechanisms. The purpose of this review is to compile the data on natural sources of ALPI, and its anticancer activity including cellular targets and anticancer mechanism in various human cancers. Moreover, this review will set the stage for further design and conduct pre-clinical and clinical trials to develop ALPI into a lead structure for oncological therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data Availability

This manuscript includes all the data searched and analyzed during the investigation.

References

  1. Fernald, K., & Kurokawa, M. (2013). Evading apoptosis in cancer. Trends in Cell Biology, 23(12), 620–633.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Seyed, M. A., Jantan, I., Bukhari, S. N. A., & Vijayaraghavan, K. (2016). A comprehensive review on the chemotherapeutic potential of piceatannol for cancer treatment, with mechanistic insights. Journal of Agricultural and Food Chemistry, 64(4), 725–737.

    Article  CAS  PubMed  Google Scholar 

  3. Pavithra, D., Gautam, M., Rama, R., Swaminathan, R., Gopal, G., Ramakrishnan, A. S., & Rajkumar, T. (2018). TGFβ C-509T, TGFβ T869C, XRCC1 Arg194Trp, IKBα C642T, IL4 C-590T Genetic polymorphisms combined with socio-economic, lifestyle, diet factors and gastric cancer risk: A case control study in South Indian population. Cancer Epidemiology, 53, 21–26.

    Article  PubMed  Google Scholar 

  4. Ashaq, A., Maqbool, M. F., Maryam, A., Khan, M., Shakir, H. A., Irfan, M., Qazi, J. I., Li, Y., & Ma, T. (2021). Hispidulin: A novel natural compound with therapeutic potential against human cancers. Phytotherapy Research, 35(2), 771–789.

    Article  CAS  PubMed  Google Scholar 

  5. Hassan, S. H., Gul, S., Zahra, H. S., Maryam, A., Shakir, H. A., Khan, M., & Irfan, M. (2021). Alpha solanine: A novel natural bioactive molecule with anticancer effects in multiple human malignancies. Nutrition and Cancer, 73(9), 1541–1552.

    Article  CAS  PubMed  Google Scholar 

  6. Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249.

    Google Scholar 

  7. Zafar, E., Maqbool, M. F., Iqbal, A., Maryam, A., Shakir, H. A., Irfan, M., …, & Ma, T. (2021). A comprehensive review on anticancer mechanism of bazedoxifene. Biotechnology and Applied Biochemistry. https://doi.org/10.1002/bab.2150

  8. Pugazhendhi, A., Edison, T. N. J. I., Karuppusamy, I., & Kathirvel, B. (2018). Inorganic nanoparticles: A potential cancer therapy for human welfare. International Journal of Pharmaceutics, 539(1–2), 104–111.

    Article  CAS  PubMed  Google Scholar 

  9. Jemal, A., Center, M. M., DeSantis, C., & Ward, E. M. (2010). Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiology and Prevention Biomarkers, 19(8), 1893–1907.

    Article  Google Scholar 

  10. Stewart, B. W., Bray, F., Forman, D., Ohgaki, H., Straif, K., Ullrich, A., & Wild, C. P. (2016). Cancer prevention as part of precision medicine: ‘Plenty to be done.’ Carcinogenesis, 37(1), 2–9.

    Article  CAS  PubMed  Google Scholar 

  11. Yingchoncharoen, P., Kalinowski, D. S., & Richardson, D. R. (2016). Lipid-based drug delivery systems in cancer therapy: What is available and what is yet to come. Pharmacological Reviews, 68(3), 701–787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mirza, Z., & Karim, S. (2021). Nanoparticles-based drug delivery and gene therapy for breast cancer: Recent advancements and future challenges. In Seminars in Cancer Biology. Academic Press: 69,226-237.

  13. Berretta, M., Della Pepa, C., Tralongo, P., Fulvi, A., Martellotta, F., Lleshi, A., …, & Facchini, G. (2017). Use of Complementary and Alternative Medicine (CAM) in cancer patients: An Italian multicenter survey. Oncotarget, 8(15), 24401.

  14. Lorençoni, M. F., Figueira, M. M., e Silva, M. V. T., Schmitt, E. F. P., Endringer, D. C., Scherer, R., …, & Fronza, M. (2020). Chemical composition and anti-inflammatory activity of essential oil and ethanolic extract of Campomanesia phaea (O. Berg.) Landrum leaves. Journal of Ethnopharmacology, 252, 112562.

  15. Alonso-Castro, A. J., Villarreal, M. L., Salazar-Olivo, L. A., Gomez-Sanchez, M., Dominguez, F., & Garcia-Carranca, A. (2011). Mexican medicinal plants used for cancer treatment: Pharmacological, phytochemical and ethnobotanical studies. Journal of Ethnopharmacology, 133(3), 945–972.

    Article  CAS  PubMed  Google Scholar 

  16. Gupta, S. C., Sharma, A., Mishra, S., & Awasthee, N. (2019). Nutraceuticals for the prevention and cure of cancer. In Nutraceuticals in Veterinary Medicine. Springer, Cham, 603–610.

  17. Majolo, F., Delwing, L. K. D. O. B., Marmitt, D. J., Bustamante-Filho, I. C., & Goettert, M. I. (2019). Medicinal plants and bioactive natural compounds for cancer treatment: Important advances for drug discovery. Phytochemistry Letters, 31, 196–207.

    Article  CAS  Google Scholar 

  18. Wang, Z. H., Hong, M., Sun, X. Y., & He, G. Y. (2012). Determination of alpinetin glucuronidation activities in liver microsomes from different species using UFLC-ESI-MS. Latin American Journal of Pharmacy, 31(5), 785–789.

  19. Qiu, J., Wu, H., Feng, F., He, X., Wang, C., Chu, S., & Xiang, Z. (2019). Metabolic profiling of alpinetin in rat plasma, urine, bile and feces after intragastric administration. Molecules, 24(19), 3458.

    Article  CAS  PubMed Central  Google Scholar 

  20. He, W., Li, Y., Tang, J., Luan, F., Jin, J., & Hu, Z. (2006). Comparison of the characterization on binding of alpinetin and cardamonin to lysozyme by spectroscopic methods. International Journal of Biological Macromolecules, 39(4–5), 165–173.

    Article  CAS  PubMed  Google Scholar 

  21. He, W., Li, Y., Xue, C., Hu, Z., Chen, X., & Sheng, F. (2005). Effect of Chinese medicine alpinetin on the structure of human serum albumin. Bioorganic & Medicinal Chemistry, 13(5), 1837–1845.

    Article  CAS  Google Scholar 

  22. Ma, S. X., Chen, W., Yang, X. D., Zhang, N., Wang, S. J., Liu, L., & Yang, L. J. (2012). Alpinetin/hydroxypropyl-β-cyclodextrin host–guest system: Preparation, characterization, inclusion mode, solubilization and stability. Journal of Pharmaceutical and Biomedical Analysis, 67, 193–200.

    Article  PubMed  CAS  Google Scholar 

  23. Hu, K., Yang, Y., Tu, Q., Luo, Y., & Ma, R. (2013). Alpinetin inhibits LPS-induced inflammatory mediator response by activating PPAR-γ in THP-1-derived macrophages. European Journal of Pharmacology, 721(1–3), 96–102.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang, G. W., Que, Q. M., & Pan, J. H. (2008). Study of the recognition between alpinetin and calf thymus DNA. Guang Pu Xue Yu Guang Pu Fen Xi, 28(8), 1910–1913.

    CAS  PubMed  Google Scholar 

  25. Shireen, P. A., Muraleedharan, K., & Mujeeb, V. A. (2018). Theoretical studies on anti-oxidant potential of alpinetin. Materials Today: Proceedings, 5(2), 8908–8915.

    Google Scholar 

  26. Guan, S., Fang, B., Song, B., Xiong, Y., & Lu, J. (2014). Immunosuppressive activity of alpinetin on activation and cytokines secretion of murine T lymphocytes. Immunopharmacology and Immunotoxicology, 36(4), 290–296.

    Article  CAS  PubMed  Google Scholar 

  27. Zhou, Y., Ding, Y. L., Zhang, J. L., Zhang, P., Wang, J. Q., & Li, Z. H. (2018). Alpinetin improved high fat diet-induced non-alcoholic fatty liver disease (NAFLD) through improving oxidative stress, inflammatory response and lipid metabolism. Biomedicine & Pharmacotherapy, 97, 1397–1408.

    Article  CAS  Google Scholar 

  28. Liang, Y., Shen, T., Ming, Q., Han, G., Zhang, Y., Liang, J., & Zhu, D. (2018). Alpinetin ameliorates inflammatory response in LPS-induced endometritis in mice. International Immunopharmacology, 62, 309–312.

    Article  CAS  PubMed  Google Scholar 

  29. Hou, S., Yuan, Q., Cheng, C., Zhang, Z., Guo, B., & Yuan, X. (2021). Alpinetin delays high-fat diet-aggravated lung carcinogenesis. Basic & Clinical Pharmacology & Toxicology, 128(3), 410–418.

    Article  CAS  Google Scholar 

  30. Huang, Y., Zhou, L. S., Yan, L., Ren, J., Zhou, D. X., & Li, S. S. (2015). Alpinetin inhibits lipopolysaccharide-induced acute kidney injury in mice. International Immunopharmacology, 28(2), 1003–1008.

    Article  CAS  PubMed  Google Scholar 

  31. Chen, H., Mo, X., Yu, J., & Huang, Z. (2013). Alpinetin attenuates inflammatory responses by interfering toll-like receptor 4/nuclear factor kappa B signaling pathway in lipopolysaccharide-induced mastitis in mice. International Immunopharmacology, 17(1), 26–32.

    Article  PubMed  CAS  Google Scholar 

  32. He, X., Wei, Z., Wang, J., Kou, J., Liu, W., Fu, Y., & Yang, Z. (2016). Alpinetin attenuates inflammatory responses by suppressing TLR4 and NLRP3 signaling pathways in DSS-induced acute colitis. Scientific Reports, 6(1), 1–11.

    CAS  Google Scholar 

  33. Lv, Q., Shi, C., Qiao, S., Cao, N., Guan, C., Dai, Y., & Wei, Z. (2018). Alpinetin exerts anti-colitis efficacy by activating AhR, regulating miR-302/DNMT-1/CREB signals, and therefore promoting Treg differentiation. Cell Death & Disease, 9(9), 1–25.

    Article  CAS  Google Scholar 

  34. Miao, Y., Lv, Q., Qiao, S., Yang, L., Tao, Y., Yan, W., …, & Wei, Z. (2019). Alpinetin improves intestinal barrier homeostasis via regulating AhR/suv39h1/TSC2/mTORC1/autophagy pathway. Toxicology and Applied Pharmacology, 384, 114772.

  35. Tan, Y., & Zheng, C. (2018). Effects of alpinetin on intestinal barrier function, inflammation and oxidative stress in dextran sulfate sodium-induced ulcerative colitis mice. The American Journal of the Medical Sciences, 355(4), 377–386.

    Article  PubMed  Google Scholar 

  36. Liu, T. G., Sha, K. H., Zhang, L. G., Liu, X. X., Yang, F., & Cheng, J. Y. (2019). Protective effects of alpinetin on lipopolysaccharide/d-Galactosamine-induced liver injury through inhibiting inflammatory and oxidative responses. Microbial Pathogenesis, 126, 239–244.

    Article  CAS  PubMed  Google Scholar 

  37. Yu, Z., Yue, B., Ding, L., Luo, X., Ren, Y., Zhang, J., …, & Dou, W. (2020). Activation of PXR by alpinetin contributes to abrogate chemically induced inflammatory bowel disease. Frontiers in Pharmacology, 11, 474.

  38. Wang, Z. T., Lau, C. W., Chan, F. L., Yao, X., Chen, Z. Y., He, Z. D., & Huang, Y. (2001). Vasorelaxant effects of cardamonin and alpinetin from Alpinia henryi K. Schum. Journal of Cardiovascular Pharmacology, 37(5), 596–606.

    Article  CAS  PubMed  Google Scholar 

  39. Li, Y. J., & Du, G. H. (2004). Effects of alpinetin on rat vascular smooth muscle cells. Journal of Asian Natural Products Research, 6(2), 87–92.

    Article  PubMed  Google Scholar 

  40. Suo, C., Sun, L., & Yang, S. (2014). Alpinetin activates the δ receptor instead of the κ and µ receptor pathways to protect against rat myocardial cell apoptosis. Experimental and Therapeutic Medicine, 7(1), 109–116.

    Article  CAS  PubMed  Google Scholar 

  41. He, R., Lu, J., Chen, Y., Li, Y., Ye, C., Hou, W., …, & Chen, X. (2020). Alpinetin inhibits RANKL-induced osteoclastogenesis and ovariectomy-induced bone loss by modulating NFATc1 transcription and lysosomal function. https://doi.org/10.21203/rs.3.rs-132706/v1

  42. Su, Y., Tao, X., & Xu, J. (2020). Protective effect of Alpinetin on rats with chronic obstructive pulmonary disease. Food Science & Nutrition, 8(12), 6603–6611.

    Article  CAS  Google Scholar 

  43. Ye, W., Lin, X., Zhang, Y., Xu, Y., Sun, R., Wen, C., …, & Chen, R. (2018). Quantification and pharmacokinetics of alpinetin in rat plasma by UHPLC–MS/MS using protein precipitation coupled with dilution approach to eliminate matrix effects. Journal of Pharmaceutical and Biomedical Analysis, 152, 242-247.

  44. Qi, C., Fu, J., Zhao, H., Xing, H., Dong, D., & Wu, B. (2019). Identification of UGTs and BCRP as potential pharmacokinetic determinants of the natural flavonoid alpinetin. Xenobiotica, 49(3), 276–283.

    Article  CAS  PubMed  Google Scholar 

  45. Tang, B., Du, J., Wang, J., Tan, G., Gao, Z., Wang, Z., & Wang, L. (2012). Alpinetin suppresses proliferation of human hepatoma cells by the activation of MKK7 and elevates sensitization to cis-diammined dichloridoplatium. Oncology Reports, 27(4), 1090–1096.

    Article  CAS  PubMed  Google Scholar 

  46. Wang, Z., Lu, W., Li, Y., & Tang, B. (2013). Alpinetin promotes Bax translocation, induces apoptosis through the mitochondrial pathway and arrests human gastric cancer cells at the G2/M phase. Molecular Medicine Reports, 7(3), 915–920.

    Article  CAS  PubMed  Google Scholar 

  47. Kuete, V., Nkuete, A. H., Mbaveng, A. T., Wiench, B., Wabo, H. K., Tane, P., & Efferth, T. (2014). Cytotoxicity and modes of action of 4′-hydroxy-2′, 6′-dimethoxychalcone and other flavonoids toward drug-sensitive and multidrug-resistant cancer cell lines. Phytomedicine, 21(12), 1651–1657.

    Article  CAS  PubMed  Google Scholar 

  48. Wu, L., Yang, W., Zhang, S. N., & Lu, J. B. (2015). Alpinetin inhibits lung cancer progression and elevates sensitization drug-resistant lung cancer cells to cis-diammined dichloridoplatium. Drug Design, Development and Therapy, 9, 6119.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang, J., Yan, Z., Liu, X., Che, S., Wang, C., & Yao, W. (2016). Alpinetin targets glioma stem cells by suppressing Notch pathway. Tumor Biology, 37(7), 9243–9248.

    Article  CAS  PubMed  Google Scholar 

  50. Liu, L., Chen, X., & Hu, Z. (2007). Separation and determination of alpinetin and cardamonin in Alpinia katsumadai Hayata by flow injection–micellar electrokinetic chromatography. Talanta, 71(1), 155–159.

    Article  CAS  PubMed  Google Scholar 

  51. Singh, M., Kamal, Y. T., Khan, M. A., Parveen, R., Ansari, S. H., & Ahmad, S. (2015). Matrix solid-phase dispersion extraction and quantification of alpinetin in amomum seed using validated HPLC and HPTLC methods. Indian Journal of Pharmaceutical Sciences, 77(1), 49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ng, T. L. M., Karim, R., Tan, Y. S., Teh, H. F., Danial, A. D., Ho, L. S., …, & Harikrishna, J. A. (2016). Amino acid and secondary metabolite production in embryogenic and non-embryogenic callus of fingerroot ginger (Boesenbergia rotunda). PLoS One, 11(6), e0156714.

  53. Rachkeeree, A., Kantadoung, K., Suksathan, R., Puangpradab, R., Page, P. A., & Sommano, S. R. (2018). Nutritional compositions and phytochemical properties of the edible flowers from selected Zingiberaceae found in Thailand. Frontiers in Nutrition, 5, 3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Huang, W. Z., Zhang, C. F., Zhang, M., & Wang, Z. T. (2007). A new biphenylpropanoid from Alpinia katsumadai. Journal of the Chinese Chemical Society, 54(6), 1553–1556.

    Article  CAS  Google Scholar 

  55. Xiao, X., Si, X., Tong, X., & Li, G. (2011). Preparation of flavonoids and diarylheptanoid from Alpinia katsumadai hayata by microwave-assisted extraction and high-speed counter-current chromatography. Separation and Purification Technology, 81(3), 265–269.

    Article  CAS  Google Scholar 

  56. Kimura, Y. (1940). Article in Japanese. Journal of Pharmacy, 60(2), 151–155. https://doi.org/10.1248/yakushi1881.60.2_151

    Article  CAS  Google Scholar 

  57. Rao, K. V., & Seshadri, T. R., (1946). A note on the constitution of alpinetin. In Proceedings of the Indian Academy of Sciences-Section-A. Springer India, 23(4), 213–214.

  58. Rao, C. B., Rao, T. N., & Suryaprakasam, S. (1976). Cardamonin and alpinetin from the seeds of Amomum subulatum. Planta Medica., 29(04), 391–392.

    Article  CAS  Google Scholar 

  59. Asakawa, Y. (1970). Chemical constituents of Alnus firma (BETULACEAE). I. Phenyl propane derivatives isolated from Alnus firma. Bulletin of the Chemical Society of Japan, 43(7), 2223–2229.

    Article  CAS  Google Scholar 

  60. Kuroyanagi, M., Noro, T., Fukushima, S., Aiyama, R., Ikuta, A., Itokawa, H., & Morita, M. (1983). Studies on the constituents of the seeds of Alpinia katsumadai Hayata. Chemical and Pharmaceutical Bulletin, 31(5), 1544–1550.

    Article  CAS  Google Scholar 

  61. Umehara, K., Nemoto, K., Kimijima, K., Matsushita, A., Terada, E., Monthakantirat, O., …, & Noguchi, H. (2008). Estrogenic constituents of the heartwood of Dalbergia parviflora. Phytochemistry, 69(2), 546-552.

  62. Malami, I., Abdul, A. B., Abdullah, R., Kassim, N. K. B., Rosli, R., Yeap, S. K., …, & Bello, M. B. (2017). Crude extracts, flavokawain B and alpinetin compounds from the rhizome of alpinia mutica induce cell death via UCK2 enzyme inhibition and in turn reduce 18S rRNA biosynthesis in HT-29 cells. PLoS One, 12(1), e0170233.

  63. Malek, S. N. A., Phang, C. W., Ibrahim, H., Abdul Wahab, N., & Sim, K. S. (2011). Phytochemical and cytotoxic investigations of Alpinia mutica rhizomes. Molecules, 16(1), 583–589.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Liu, R. H., Wen, X. C., Shao, F., Zhang, P. Z., Huang, H. L., & Zhang, S. (2016). Flavonoids from heartwood of Dalbergia cochinchinensis. Chinese Herbal Medicines, 8(1), 89–93.

    Article  CAS  Google Scholar 

  65. Yap, A. L. C. (2008). Phytochemical and Hplc profiling of extracts from fingerroot (Boesenbergia rotunda) rhizomes, doctoral dissertation. Universiti Putra Malaysia.

    Google Scholar 

  66. Nguyen, M. T. T., Nguyen, H. X., Le, T. H., Do, T. N. V., Dang, P. H., Pham, T. V., …, & Nguyen, N. T. (2020). A new flavanone derivative from the rhizomes of Boesenbergia pandurata. Natural Product Research, 36(8), 1959–1965.

  67. Goodger, J. Q., Seneratne, S. L., Nicolle, D., & Woodrow, I. E. (2016). Foliar essential oil glands of Eucalyptus subgenus Eucalyptus (Myrtaceae) are a rich source of flavonoids and related non-volatile constituents. PLoS ONE, 11(3), e0151432.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Terreaux, C., Gupta, M. P., & Hostettmann, K. (1998). Antifungal benzoic acid derivatives from Piper Dilatatum in honour of Professor GH Neil Towers 75th birthday. Phytochemistry, 49(2), 461–464.

    Article  CAS  Google Scholar 

  69. Bick, I. C., Brown, R., & Hillis, W. (1972). Three flavanones from leaves of Eucalyptus sieberi. Australian Journal of Chemistry, 25(2), 449–451.

    Article  CAS  Google Scholar 

  70. Saraf, I., Marsh, K. J., Vir, S., Foley, W. J., & Singh, I. P. (2017). Quantitative analysis of various B-ring unsubstituted and substituted flavonoids in ten Australian species of Eucalyptus. Natural Product Communications, 12(11), 1934578–1701201109.

    Article  Google Scholar 

  71. Pan, W., Liu, K., Guan, Y., Tan, G. T., Hung, N. V., Cuong, N. M., …, & Zhang, H. (2014). Bioactive compounds from Vitex leptobotrys. Journal of Natural Products, 77(3), 663-667.

  72. Suga, T., Iwata, N., & Asakawa, Y. (1972). Chemical constituents of the male flower of Alnus pendula (Betulaceae). Bulletin of the Chemical Society of Japan, 45(7), 2058–2060.

    Article  CAS  Google Scholar 

  73. Giang, P. M., & Son, P. T. (2007). Futher study on chemical constituents and biological activities of Alpinia conchigera Griff. (Zingiberaceae). Vietnam Journal of Chemistry, 45(2), 260.

    Google Scholar 

  74. Phan, M. G., Dang, B. T., & Phan, T. S. (2005). Flavonoid compounds from the rhizomes of Alpinia conchigera Griff., Zingiberaceae. Vietnam Journal of Chemistry, 43(1), 105–108.

    CAS  Google Scholar 

  75. Marques, A. M., Pereira, S. L., Paiva, R. A., Cavalcante, C. V., Sudo, S. Z., Tinoco, L. W., …, & Sudo, G. Z. (2015). Hypoglycemic effect of the methanol flower extract of Piper claussenianum and the major constituent 2′, 6′-dihydroxy-4′-methoxychalcone in streptozotocin diabetic rats. Indian Journal of Pharmaceutical Sciences, 77(2), 237.

  76. Marques, A. M., Renan, A. D., da Fonseca, L. M., Capella, M. A., Guimarães, E. F., & Kaplan, M. A. C. (2013). Preliminary anticancer potency evaluation and phytochemical investigation of methanol extract of Piper claussenianum (Miq.) C. DC. Journal of Applied Pharmaceutical Science, 3(2), 13.

    CAS  Google Scholar 

  77. Katerere, D. R., Gray, A. I., Nash, R. J., & Waigh, R. D. (2012). Phytochemical and antimicrobial investigations of stilbenoids and flavonoids isolated from three species of Combretaceae. Fitoterapia, 83(5), 932–940.

    Article  CAS  PubMed  Google Scholar 

  78. Katerere, D. R., Serage, A., & Eloff, J. N. (2018). Isolation and characterisation of antibacterial compounds from Combretum apiculatum subspecies apiculatum (Combretaceae) leaves. AOSIS Open Journals.

  79. Katerere, D. R., Gray, A. I., Kennedy, A. R., Nash, R. J., & Waigh, R. D. (2004). Cyclobutanes from Combretum albopunctatum. Phytochemistry, 65(4), 433–438.

    Article  CAS  PubMed  Google Scholar 

  80. Al-Rehaily, A. J., Albishi, O. A., El-Olemy, M. M., & Mossa, J. S. (2008). Flavonoids and terpenoids from Helichrysum forskahlii. Phytochemistry, 69(9), 1910–1914.

    Article  CAS  PubMed  Google Scholar 

  81. Narasimhulu, G., Reddy, K. K., & Mohamed, J. (2014). The genus Polygonum (Polygonaceae): An ethnopharmacological and phytochemical perspectives: Review. International Journal of Pharmacy and Pharmaceutical Sciences, 6(2), 21–45.

    Google Scholar 

  82. Yasir, M., Sultana, B., Nigam, P. S., & Owusu-Apenten, R. (2016). Antioxidant and genoprotective activity of selected cucurbitaceae seed extracts and LC–ESIMS/MS identification of phenolic components. Food Chemistry, 199, 307–313.

    Article  CAS  PubMed  Google Scholar 

  83. Atun, S., Arianingrum, R., Sulistyowati, E., & Aznam, N. (2013). Isolation and antimutagenic activity of some flavanone compounds from Kaempferia rotunda. International Journal of Chemical and Analytical Science, 4(1), 3–8.

    Article  Google Scholar 

  84. Shen, J., Li, P., He, C. N., Liu, H. T., Liu, Y. Z., Sun, X. B., …, & Xiao, P. G. (2019). Simultaneous determination of 15 flavonoids from different parts of Scutellaria baicalensis and its chemometrics analysis. Chinese Herbal Medicines, 11(1), 20-27.

  85. Xiang, L., Wang, Y., Yi, X., Wang, X., & He, X. (2016). Chemical constituent and antioxidant activity of the husk of Chinese hickory. Journal of Functional Foods, 23, 378–388.

    Article  CAS  Google Scholar 

  86. López, S. N., Sierra, M. G., Gattuso, S. J., Furlán, R. L., & Zacchino, S. A. (2006). An unusual homoisoflavanone and a structurally-related dihydrochalcone from Polygonum ferrugineum (Polygonaceae). Phytochemistry, 67(19), 2152–2158.

    Article  PubMed  CAS  Google Scholar 

  87. Jiang, R. W., He, Z. D., But, P. P. H., Chan, Y. M., & Mak, T. C. (2001). A novel 1: 1 complex of potassium mikanin-3-O-sulfate with methanol. Chemical and Pharmaceutical Bulletin, 49(9), 1166–1169.

    Article  CAS  PubMed  Google Scholar 

  88. But, P. P. H., He, Z. D., Ma, S. C., Chan, Y. M., Shaw, P. C., Ye, W. C., & Jiang, R. W. (2009). Antiviral constituents against respiratory viruses from Mikania micrantha. Journal of Natural Products, 72(5), 925–928.

    Article  CAS  PubMed  Google Scholar 

  89. Giang, P. M., Son, P. T., Matsunami, K., & Otsuka, H. (2005). New diarylheptanoids from Alpinia pinnanensis. Chemical and Pharmaceutical Bulletin, 53(10), 1335–1337.

    Article  CAS  PubMed  Google Scholar 

  90. Yang, W., He, S., Xiao, N., Qiao, Y., Sui, H., Liang, L., …, & Zhang, L. (2019). Simultaneous determination of 15 flavonoids in Scutellaria barbata–Hedyotis diffusa Herb Pair by HPLC Q-TOF MS. Journal of AOAC International, 102(1), 75-80.

  91. Vásquez-Ocmín, P., Gallard, J. F., Van Baelen, A. C., Leblanc, K., Cojean, S., Mouray, E., …, & Maciuk, A. (2020). Antiplasmodial biodereplication based on highly efficient methods. Analytical Chemistry. https://doi.org/10.26434/chemrxiv.11828802.v1

  92. Cao, X. D., Ding, Z. S., Jiang, F. S., Ding, X. H., Chen, J. Z., Chen, S. H., & Lv, G. Y. (2012). Antitumor constituents from the leaves of Carya cathayensis. Natural Product Research, 26(22), 2089–2094.

    CAS  PubMed  Google Scholar 

  93. Krishna, B. M., & Chaganty, R. B. (1973). Cardamonin and alpinetin from the seeds of Alpinia speciosa. Phytochemical Reports, 12(1), 238.

    Article  CAS  Google Scholar 

  94. Miyaichi, Y., Imoto, Y., Tomimori, T., & Lin, C. C. (1987). Studies on the constituents of Scutellaria species. IX. On the flavonoid constituents of the root of Scutellaria indica L. Chemical and Pharmaceutical Bulletin, 35(9), 3720–3725.

    Article  CAS  Google Scholar 

  95. Zhao, X., Zhang, S., Liu, D., Yang, M., & Wei, J. (2020). Analysis of flavonoids in dalbergia odorifera by ultra-performance liquid chromatography with tandem mass spectrometry. Molecules, 25(2), 389.

    Article  CAS  PubMed Central  Google Scholar 

  96. Zeng, J., Zhang, X., Guo, Z., Feng, J., Zeng, J., Xue, X., & Liang, X. (2012). Separation and identification of flavonoids from complex samples using off-line two-dimensional liquid chromatography tandem mass spectrometry. Journal of Chromatography A, 1220, 50–56.

    Article  CAS  PubMed  Google Scholar 

  97. Kim, J. G., Le, T. P. L., Hong, H. R., Han, J. S., Ko, J. H., Lee, S. H., …, & Hwang, B. Y. (2019). Nitric oxide inhibitory constituents from the fruits of Amomum tsao-ko. Natural Product Sciences, 25(1), 76-80.

  98. Riaz, T., Abbasi, M. A., Riaz, N., Saleem, M., Khan, K. M., an & Ajaib, M. (2012). Isolation, structure elucidation and antioxidant screening of secondary metabolites from Rhynchosia pseudo-cajan. Journal of the Chemical Society of Pakistan, 34(5).

  99. Milani, R. R., Alves, O. J., Bertanha, C. S., Gimenez, V. M., Squarisi, I. S., Nicolella, H. D., …, & Pauletti, P. M. (2021). Antipromastigote and cytotoxic activities of flavonoids from Fridericia speciosa leaves. Química Nova, 43, 1404-1407.

  100. Liu, L., Luo, J. G., & Kong, L. Y. (2012). Chemistry and antioxidant activity of phenolic compounds isolated from Alpinia bracteata. Chemistry of Natural Compounds, 48(5), 785–788.

    Article  CAS  Google Scholar 

  101. Wang, L., Luo, Y. P., Yang, X. D., Zhao, J. F., & Li, L. (2010). Chemical constituents of Litsea pedunculata. In Journal of Yunnan University (Natural Sciences Edition), 05. https://doi.org/10.5114/aoms/138832

  102. Ticha, L. A., Klaasen, J. A., Green, I. R., Naidoo, S., Baker, B., & Pietersen, R. D. (2015). Phytochemical and antimicrobial screening of flavanones and chalcones from Galenia africana and Dicerothamnus rhinocerotis. Natural Product Communications, 10(7), 1934578–1501000713.

    Article  Google Scholar 

  103. Guo, Y., Chen, Y., Liu, H., & Yan, W. (2020). Alpinetin inhibits oral squamous cell carcinoma proliferation via miR-211-5p upregulation and notch pathway deactivation. Nutrition and Cancer, 72(5), 757–767.

    Article  CAS  PubMed  Google Scholar 

  104. Du, J., Tang, B., Wang, J., Sui, H., Jin, X., Wang, L., & Wang, Z. (2012). Antiproliferative effect of alpinetin in BxPC-3 pancreatic cancer cells. International Journal of Molecular Medicine, 29(4), 607–612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhang, H., Jiang, Q., Gong, G., Li, M., & Alotaibi, S. H. (2021). Alpinetin: anti-human gastric cancer potential and urease inhibition activity in vitro. Archives of Medical Science. https://doi.org/10.5114/aoms/138832

  106. Zhao, X., Guo, X., Shen, J., & Hua, D. (2018). Alpinetin inhibits proliferation and migration of ovarian cancer cells via suppression of STAT3 signaling. Molecular Medicine Reports, 18(4), 4030–4036.

    CAS  PubMed  Google Scholar 

  107. Malami, I., Muhammad, A., Abubakar, I. B., & Alhassan, A. M. (2019). Expression of wild-type p53 by curcumin, alpinetin and flavokawain B in colorectal cancer cells expressing R273H mutant p53. Nigerian Journal of Basic and Applied Sciences, 27(2), 88–94.

    Article  Google Scholar 

  108. Zhang, T., Guo, S., Zhu, X., Qiu, J., Deng, G., & Qiu, C. (2020). Alpinetin inhibits breast cancer growth by ROS/NF-κB/HIF-1α axis. Journal of Cellular and Molecular Medicine, 24(15), 8430–8440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Tang, B., Yang, L. I., Tang, F., Wang, Z., Nie, R., Shuiping, Y. U., & Bo, L. I. (2013). Alpinetin down-regulating Bcl-2 promotes apoptosis of human hepatic cancer Hep3B cells. Chinese Journal of General Surgery, 28(7), 542–545.

    Google Scholar 

  110. Mehrbod, P., Ande, S. R., Alizadeh, J., Rahimizadeh, S., Shariati, A., Malek, H., …, & Ghavami, S. (2019). The roles of apoptosis, autophagy and unfolded protein response in arbovirus, influenza virus, and HIV infections. Virulence, 10(1), 376-413.

  111. Wang, Z. (2004). Roles of K+ channels in regulating tumour cell proliferation and apoptosis. Pflügers Archiv, 448(3), 274–286.

    Article  CAS  PubMed  Google Scholar 

  112. Hassan, M., Watari, H., AbuAlmaaty, A., Ohba, Y., & Sakuragi, N. (2014). Apoptosis and molecular targeting therapy in cancer. Biomed Research International, 2014, 150845.

  113. Bao, H., Zhang, Q., Zhu, Z., Xu, H., Ding, F., Wang, M., …, & Yan, Z. (2017). BHX, a novel pyrazoline derivative, inhibits breast cancer cell invasion by reversing the epithelial-mesenchymal transition and down-regulating Wnt/β-catenin signalling. Scientific Reports, 7(1), 1-10.

  114. Liu, Y., & Zhu, X. (2017). Endoplasmic reticulum-mitochondria tethering in neurodegenerative diseases. Translational Neurodegeneration, 6(1), 1–8.

    Article  CAS  Google Scholar 

  115. Villa-Pulgarín, J. A., Gajate, C., Botet, J., Jimenez, A., Justies, N., Varela-M, R. E., …, & Mollinedo, F. (2017). Mitochondria and lipid raft-located FOF1-ATP synthase as major therapeutic targets in the antileishmanial and anticancer activities of ether lipid edelfosine. PLoS Neglected Tropical Diseases, 11(8), e0005805.

  116. Breckenridge, D. G., Stojanovic, M., Marcellus, R. C., & Shore, G. C. (2003). Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. The Journal of Cell Biology, 160(7), 1115–1127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Estaquier, J., & Arnoult, D. (2007). Inhibiting Drp1-mediated mitochondrial fission selectively prevents the release of cytochrome c during apoptosis. Cell Death & Differentiation, 14(6), 1086–1094.

    Article  CAS  Google Scholar 

  118. Khan, M., Maryam, A., Zhang, H., Mehmood, T., & Ma, T. (2016). Killing cancer with platycodin D through multiple mechanisms. Journal of Cellular and Molecular Medicine, 20(3), 389–402.

    Article  CAS  PubMed  Google Scholar 

  119. Burke, P. J. (2017). Mitochondria, bioenergetics and apoptosis in cancer. Trends in Cancer, 3(12), 857–870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Jezek, J., Chang, K. T., Joshi, A. M., & Strich, R. (2019). Mitochondrial translocation of cyclin C stimulates intrinsic apoptosis through Bax recruitment. EMBO Reports, 20(9), e47425.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Riedl, S. J., & Shi, Y. (2004). Molecular mechanisms of caspase regulation during apoptosis. Nature Reviews Molecular Cell Biology, 5(11), 897–907.

    Article  CAS  PubMed  Google Scholar 

  122. Leal-Esteban, L. C., & Fajas, L. (2020). Cell cycle regulators in cancer cell metabolism. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1866(5), 165715.

    Article  CAS  Google Scholar 

  123. Lim, S., & Kaldis, P. (2013). Cdks, cyclins and CKIs: Roles beyond cell cycle regulation. Development, 140(15), 3079–3093.

    Article  CAS  PubMed  Google Scholar 

  124. Goel, S., DeCristo, M. J., McAllister, S. S., & Zhao, J. J. (2018). CDK4/6 inhibition in cancer: Beyond cell cycle arrest. Trends in Cell Biology, 28(11), 911–925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Malumbres, M. (2014). Cyclin-dependent kinases. Genome Biology, 15(6), 1–10.

    Article  Google Scholar 

  126. Millimouno, F. M., Dong, J., Yang, L., Li, J., & Li, X. (2014). Targeting apoptosis pathways in cancer and perspectives with natural compounds from mother nature. Cancer Prevention Research, 7(11), 1081–1107.

    Article  CAS  PubMed  Google Scholar 

  127. Tong, L., Chuang, C. C., Wu, S., & Zuo, L. (2015). Reactive oxygen species in redox cancer therapy. Cancer Letters, 367(1), 18–25.

    Article  CAS  PubMed  Google Scholar 

  128. Kumari, S., Badana, A. K., & Malla, R. (2018). Reactive oxygen species: A key constituent in cancer survival. Biomarker Insights, 13, 1177271918755391.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Sullivan, L. B., & Chandel, N. S. (2014). Mitochondrial reactive oxygen species and cancer. Cancer & Metabolism, 2(1), 1–12.

    Article  Google Scholar 

  130. Madan, E., Parker, T. M., Pelham, C. J., Palma, A. M., Peixoto, M. L., Nagane, M., …, & Gogna, R. (2019). HIF-transcribed p53 chaperones HIF-1α. Nucleic Acids Research, 47(19), 10212-10234.

  131. Roderick, H. L., & Cook, S. J. (2008). Ca 2+ signalling checkpoints in cancer: Remodelling Ca 2+ for cancer cell proliferation and survival. Nature Reviews Cancer, 8(5), 361–375.

    Article  CAS  PubMed  Google Scholar 

  132. Maddika, S., Ande, S. R., Panigrahi, S., Paranjothy, T., Weglarczyk, K., Zuse, A., …, & Los, M. (2007). Cell survival, cell death and cell cycle pathways are interconnected: Implications for cancer therapy. Drug Resistance Updates, 10(1-2), 13-29.

  133. Yamaguchi, H., & Condeelis, J. (2007). Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1773(5), 642–652.

    Article  CAS  Google Scholar 

  134. Kang, F. B., Wang, L., Jia, H. C., Li, D., Li, H. J., Zhang, Y. G., & Sun, D. X. (2015). B7–H3 promotes aggression and invasion of hepatocellular carcinoma by targeting epithelial-to-mesenchymal transition via JAK2/STAT3/Slug signaling pathway. Cancer Cell International, 15(1), 1–11.

    Article  CAS  Google Scholar 

  135. Chen, S. H., Murphy, D., Lassoued, W., Thurston, G., Feldman, M. D., & Lee, W. M. (2008). Activated STAT3 is a mediator and biomarker of VEGF endothelial activation. Cancer Biology & Therapy, 7(12), 1994–2003.

    Article  CAS  Google Scholar 

  136. Cai, L., Zhang, G., Tong, X., You, Q., An, Y., Wang, Y., …, & Zheng, J. (2010). Growth inhibition of human ovarian cancer cells by blocking STAT3 activation with small interfering RNA. European Journal of Obstetrics & Gynecology and Reproductive Biology, 148(1), 73-80.

  137. Jia, Z. H., Jia, Y., Guo, F. J., Chen, J., Zhang, X. W., & Cui, M. H. (2017). Phosphorylation of STAT3 at Tyr705 regulates MMP-9 production in epithelial ovarian cancer. PLoS ONE, 12(8), e0183622.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Kumar, J., Fang, H., McCulloch, D. R., Crowley, T., & Ward, A. C. (2017). Leptin receptor signaling via Janus kinase 2/Signal transducer and activator of transcription 3 impacts on ovarian cancer cell phenotypes. Oncotarget, 8(55), 93530.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Hirano, T., Ishihara, K., & Hibi, M. (2000). Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene, 19(21), 2548–2556.

    Article  CAS  PubMed  Google Scholar 

  140. Yu, Y., Jin, H., Xu, J., Gu, J., Li, X., Xie, Q., …, & Huang, C. (2018). XIAP overexpression promotes bladder cancer invasion in vitro and lung metastasis in vivo via enhancing nucleolin-mediated Rho-GDIβ mRNA stability. International Journal of Cancer, 142(10), 2040-2055.

  141. Bolós, V., Blanco, M., Medina, V., Aparicio, G., Díaz-Prado, S., & Grande, E. (2009). Notch signalling in cancer stem cells. Clinical and Translational Oncology, 11(1), 11–19.

    Article  PubMed  Google Scholar 

  142. Pecorino, L. (2016). Molecular biology of cancer: Mechanisms, targets, and therapeutics. Oxford University Press.

    Google Scholar 

  143. Mehmood, T., Maryam, A., Ghramh, H. A., Khan, M., & Ma, T. (2017). Deoxyelephantopin and isodeoxyelephantopin as potential anticancer agents with effects on multiple signaling pathways. Molecules, 22(6), 1013.

    Article  PubMed Central  Google Scholar 

  144. Mokhtari, R. B., Homayouni, T. S., Baluch, N., Morgatskaya, E., Kumar, S., Das, B., & Yeger, H. (2017). Combination therapy in combating cancer. Oncotarget, 8(23), 38022.

    Article  PubMed Central  Google Scholar 

  145. Choi, J. E., Hur, W., Jung, C. K., Piao, L. S., Lyoo, K., Hong, S. W., …, & Yoon, S. K. (2011). Silencing of 14-3-3ζ over-expression in hepatocellular carcinoma inhibits tumor growth and enhances chemosensitivity to cis-diammined dichloridoplatium. Cancer Letters, 303(2), 99-107.

  146. Xiang, Z. H., Sun, D. M., Xu, A. L., Bi, X. L., Jiang, J. Y., Zeng, Z. H., et al. (2019). Study on UPLC fingerprints and determination of Xingqiwenzhong granules. Journal of Guangdong Pharmaceutical University, 35(6), 757–762.

    Google Scholar 

  147. Chen, G., Xia, J. Z., & Xu, Z. G. (2018). Study on the quality standard of Jianweizhitong tablets. Northwest Pharmaceutical Journal, 33, 456–458.

    Google Scholar 

  148. Gan, B. C. (2005). Cultivation and utilization of Alpinia Katsumadi Hayata. Resource Development and Market, 21, 144–145.

    Google Scholar 

  149. Huang, H. L. (2016). Preparation and clinical application of Fufangcaodoukou and Belladonna Tincture. Chinese Journal of Modern Drug Application, 10, 281–282.

    Google Scholar 

  150. The, S. N. (2017). A review on the medicinal plant Dalbergia odorifera species: phytochemistry and biological activity. Evidence-based Complementary and Alternative Medicine: eCAM, 2017. https://doi.org/10.1155/2017/7142370

Download references

Funding

This study was supported by the National Natural Science Foundation of China (Grant No.81672944), the priority academic program, development of Jiangsu Higher Education Institutions (Integration of Chinese and Western Medicines) and Innovation team of Six Talent Peaks Project in Jiangsu Province (WSN-062).

Author information

Authors and Affiliations

Authors

Contributions

Muhammad Khan, Yongming Li and Tonghui Ma designed the study. Sameena Gul and Muhammad Faisal Maqbool searched the literature and wrote the manuscript. Dongying Zheng assisted in literature searching. Muhammad Khan analyzed and approved the manuscript.

Corresponding authors

Correspondence to Muhammad Khan or Tonghui Ma.

Ethics declarations

Ethical Approval and Consent to Publish

Not applicable.

Consent to Publish

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gul, S., Maqbool, M.F., Zheng, D. et al. Alpinetin: a Dietary Flavonoid with Diverse Anticancer Effects. Appl Biochem Biotechnol 194, 4220–4243 (2022). https://doi.org/10.1007/s12010-022-03960-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03960-2

Keywords