Skip to main content
Log in

The Biodegradation of 4-Chlorophenol in a Moving Bed Biofilm Reactor Using Response Surface Methodology: Effect of Biogenic Substrate and Kinetic Evaluation

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

4-Chlorophenol (4-CP) is a persistent organic pollutant commonly found in petrochemical effluents. It causes toxic, carcinogenic and mutagenic effects on human beings and aquatic lives. Therefore, an environmentally benign and cost-effective approach is needed against such pollutants. In this direction, the chlorophenol degrading bacterial consortium consisting of Bacillus flexus GS1 IIT (BHU) and Bacillus cereus GS2 IIT (BHU) was isolated from a refinery site. A composite biocarrier namely polypropylene-polyurethane foam (PP-PUF) was developed for bacterial cells immobilization purpose. A lab-scale moving bed biofilm reactor (MBBR) packed with Bacillus sp. immobilized PP-PUF biocarrier was employed to analyse the effect of peptone on biodegradation of 4-CP. The statistical tool, i.e. response surface methodology (RSM), was used to optimize the process variables (4-CP concentration, peptone concentration and hydraulic retention time). The higher values of peptone concentration and hydraulic retention time were found to be favourable for maximum removal of 4-CP. At the optimized process conditions, the maximum removals of 4-CP and chemical oxygen demand (COD) were obtained to be 91.07 and 75.29%, respectively. In addition, three kinetic models, i.e. second-order, Monod and modified Stover-Kincannon models, were employed to investigate the behaviour of MBBR during 4-CP biodegradation. The high regression coefficients obtained by the second-order and modified Stover-Kincannon models showed better accuracy for estimating substrate degradation kinetics. The phytotoxicity study supported that the Vigna radiata seeds germinated in treated wastewater showed higher growth (i.e. radicle and plumule) than the untreated wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Sandhibigraha, S., Chakraborty, S., Bandyopadhyay, T., & Bhunia, B. (2020). A kinetic study of 4-chlorophenol biodegradation by the novel isolated Bacillus subtilis in batch shake flask. Environmental Engineering Research, 25(1), 62–70. https://doi.org/10.4491/eer.2018.416

    Article  Google Scholar 

  2. Dey, A., Sarkar, P., & Das, A. (2019). Studies on Biodegradation of 4-Chlorophenol and 4-Nitrophenol by Isolated Pure Cultures. European Journal of Sustainable Development, 8(4), 281. https://doi.org/10.14207/ejsd.2019.v8n4p281

    Article  Google Scholar 

  3. Schweigert, N., Zehnder, A. J., & Eggen, R. I. (2001). Chemical properties of catechols and their molecular modes of toxic action in cells, from microorganisms to mammals: Minireview. Environmental Microbiology, 3(2), 81–91. https://doi.org/10.1046/j.1462-2920.2001.00176.x

    Article  CAS  PubMed  Google Scholar 

  4. Anku, W. W., Mamo, M. A., & Govender, P. P. (2017). Phenolic compounds in water: Sources, reactivity, toxicity and treatment methods. Phenolic compounds-natural sources, importance and applications, 419-443.https://doi.org/10.5772/66927

  5. Yao, C. L., Lin, C. C., Chu, I. M., & Lai, Y. T. (2020). Development of a Surfactant-Containing Process to Improve the Removal Efficiency of Phenol and Control the Molecular Weight of Synthetic Phenolic Polymers Using Horseradish Peroxidase in an Aqueous System. Applied Biochemistry and Biotechnology, 1-14. https://doi.org/10.1007/s12010-020-03245-6

  6. Park, J. S., Brown, M. T., & Han, T. (2012). Phenol toxicity to the aquatic macrophyte Lemna paucicostata. Aquatic Toxicology, 106, 182–188. https://doi.org/10.1016/j.aquatox.2011.10.004

    Article  CAS  PubMed  Google Scholar 

  7. Phalgune, U. D., Rajamohanan, P. R., Gaikwad, B. G., Varma, R. J., & George, S. (2013). Biodegradation of phenol by the yeast Candida tropicalis: An investigation by NMR spectroscopy. Applied Biochemistry and Biotechnology, 169(7), 2029–2037. https://doi.org/10.1007/s12010-013-0119-0

    Article  CAS  PubMed  Google Scholar 

  8. e Silva, N. C. G., de Macedo, A. C., Pinheiro, Á. D. T., & Rocha, M. V. P. (2019). Phenol biodegradation by Candida tropicalis ATCC 750 immobilized on cashew apple bagasse. Journal of Environmental Chemical Engineering, 7(3), 103076. https://doi.org/10.1016/j.jece.2019.103076

    Article  CAS  Google Scholar 

  9. Basak, B., Bhunia, B., Dutta, S., & Dey, A. (2013). Enhanced biodegradation of 4-chlorophenol by Candida tropicalis PHB5 via optimization of physicochemical parameters using Taguchi orthogonal array approach. International Biodeterioration & Biodegradation, 78, 17–23. https://doi.org/10.1016/j.ibiod.2012.12.005

    Article  CAS  Google Scholar 

  10. Zhao, J., Li, Y., Chen, X., & Li, Y. (2018). Effects of carbon sources on sludge performance and microbial community for 4-chlorophenol wastewater treatment in sequencing batch reactors. Bioresource technology, 255, 22–28. https://doi.org/10.1016/j.biortech.2018.01.106

    Article  CAS  PubMed  Google Scholar 

  11. Wang, J., Zhou, Y., Li, P., Lu, H., Jin, R., & Liu, G. (2015). Effects of redox mediators on anaerobic degradation of phenol by Shewanella sp. XB. Applied Biochemistry and Biotechnology, 175(6), 3162–3172. https://doi.org/10.1007/s12010-015-1490-9

    Article  CAS  PubMed  Google Scholar 

  12. Mohanty, S. S., & Jena, H. M. (2017). Biodegradation of phenol by free and immobilized cells of a novel Pseudomonas sp. NBM11. Brazilian Journal of Chemical Engineering, 34, 75–84. https://doi.org/10.1590/0104-6632.20170341s20150388

    Article  CAS  Google Scholar 

  13. Panigrahy, N., Barik, M., & Sahoo, N. K. (2020). Kinetics of Phenol Biodegradation by an Indigenous Pseudomonas citronellolis NS1 Isolated from Coke Oven Wastewater. Journal of Hazardous, Toxic, and Radioactive Waste, 24(3), 04020019. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000502

    Article  CAS  Google Scholar 

  14. Swain, G., Sonwani, R. K., Giri, B. S., Singh, R. S., Jaiswal, R. P., & Rai, B. N. (2020). Collective removal of phenol and ammonia in a moving bed biofilm reactor using modified bio-carriers: Process optimization and kinetic study. Bioresource Technology, 306, 123177. https://doi.org/10.1016/j.biortech.2020.123177

    Article  CAS  PubMed  Google Scholar 

  15. Sonwani, R. K., Giri, B. S., Jaiswal, R. P., Singh, R. S., & Rai, B. N. (2020). Performance evaluation of a continuous packed bed bioreactor: Bio-kinetics and external mass transfer study. Ecotoxicology and Environmental Safety, 201, 110860. https://doi.org/10.1016/j.ecoenv.2020.110860

    Article  CAS  PubMed  Google Scholar 

  16. Lim, J. W., Lim, P. E., Seng, C. E., & Adnan, R. (2013). Evaluation of aeration strategy in moving bed sequencing batch reactor performing simultaneous 4-chlorophenol and nitrogen removal. Applied Biochemistry and Biotechnology, 170(4), 831–840. https://doi.org/10.1007/s12010-013-0245-8

    Article  CAS  PubMed  Google Scholar 

  17. Matheus, M. C., Ekenberg, M., Bassin, J. P., Dezotti, M. W., & Piculell, M. (2021). High loaded moving bed biofilm reactors treating pulp & paper industry wastewater: Effect of hydraulic retention time, filling degree and nutrients availability on performance, biomass fractions and nutrients utilization. Journal of Environmental Chemical Engineering, 9(1), 104944. https://doi.org/10.1016/j.jece.2020.104944

    Article  CAS  Google Scholar 

  18. Deng, L., Guo, W., Ngo, H. H., Zhang, X., Wang, X. C., Zhang, Q., & Chen, R. (2016). New functional biocarriers for enhancing the performance of a hybrid moving bed biofilm reactor–membrane bioreactor system. Bioresource Technology, 208, 87–93. https://doi.org/10.1016/j.biortech.2016.02.057

    Article  CAS  PubMed  Google Scholar 

  19. Bassin, J. P., & Dezotti, M. (2018). Moving bed biofilm reactor (MBBR). In Advanced biological processes for wastewater treatment (pp. 37–74). Springer, Cham, https://doi.org/10.1007/978-3-319-58835-3_3.

  20. Zheng, M., Zhu, H., Han, Y., Xu, C., Zhang, Z., & Han, H. (2019). Comparative investigation on carbon-based moving bed biofilm reactor (MBBR) for synchronous removal of phenols and ammonia in treating coal pyrolysis wastewater at pilot-scale. Bioresource Technology, 288, 121590. https://doi.org/10.1016/j.biortech.2019.121590

    Article  CAS  PubMed  Google Scholar 

  21. Nakhli, S. A. A., Ahmadizadeh, K., Fereshtehnejad, M., Rostami, M. H., Safari, M., & Borghei, S. M. (2014). Biological removal of phenol from saline wastewater using a moving bed biofilm reactor containing acclimated mixed consortia. Springerplus, 3(1), 1–10. https://doi.org/10.1186/2193-1801-3-112

    Article  CAS  Google Scholar 

  22. Swain, G., Sonwani, R. K., Singh, R. S., Jaiswal, R. P., & Rai, B. N. (2021). A comparative study of 4-chlorophenol biodegradation in a packed bed and moving bed bioreactor: Performance evaluation and toxicity analysis. Environmental Technology & Innovation, 24, 101820. https://doi.org/10.1016/j.eti.2021.101820

    Article  CAS  Google Scholar 

  23. Faridnasr, M., Ghanbari, B., & Sassani, A. (2016). Optimization of the moving-bed biofilm sequencing batch reactor (MBSBR) to control aeration time by kinetic computational modeling: Simulated sugar-industry wastewater treatment. Bioresource Technology, 208, 149–160. https://doi.org/10.1016/j.biortech.2016.02.047

    Article  CAS  PubMed  Google Scholar 

  24. Federation, W. E., & Association, A. P. H. (2005). Standard methods for the examination of water and wastewater. American Public Health Association (APHA).

    Google Scholar 

  25. Patel, B. P., & Kumar, A. (2016). Biodegradation of 4-chlorophenol in an airlift inner loop bioreactor with mixed consortium: Effect of HRT, loading rate and biogenic substrate. 3 Biotech, 6(2), 1–9. https://doi.org/10.1007/s13205-016-0435-5

    Article  Google Scholar 

  26. Sahinkaya, E., & Dilek, F. B. (2005). Biodegradation of 4-chlorophenol by acclimated and unacclimated activated sludge—evaluation of biokinetic coefficients. Environmental Research, 99(2), 243–252. https://doi.org/10.1016/j.envres.2004.11.005

    Article  CAS  PubMed  Google Scholar 

  27. Brink, A., Sheridan, C. M., & Harding, K. G. (2017). A kinetic study of a mesophilic aerobic moving bed biofilm reactor (MBBR) treating paper and pulp mill effluents: The impact of phenols on biodegradation rates. Journal of Water Process Engineering, 19, 35–41. https://doi.org/10.1016/j.jwpe.2017.07.003

    Article  Google Scholar 

  28. AghaBeiki, S., Rad, A. S., & Shokrolahzadeh, A. (2016). Performance and modeling of a moving bed biofilm process: Nickel and chromium heavy metal removal from industrial wastewater. RSC Advances, 6(114), 113737–113744. https://doi.org/10.1039/C6RA24259F

    Article  CAS  Google Scholar 

  29. Ahmadi, M., Jaafarzadeh, N., Rahmat, Z. G., Babaei, A. A., Alavi, N., Baboli, Z., & Niri, M. V. (2017). Kinetic studies on the removal of phenol by MBBR from saline wastewater. Journal of Environmental Health Science and Engineering, 15(1), 1–7. https://doi.org/10.1186/s40201-017-0284-0

    Article  CAS  Google Scholar 

  30. Sahariah, B. P., & Chakraborty, S. (2011). Kinetic analysis of phenol, thiocyanate and ammonia-nitrogen removals in an anaerobic–anoxic–aerobic moving bed bioreactor system. Journal of Hazardous Materials, 190(1–3), 260–267. https://doi.org/10.1016/j.jhazmat.2011.03.038

    Article  CAS  PubMed  Google Scholar 

  31. Oberoi, A. S., & Philip, L. (2017). Performance evaluation of attached biofilm reactors for the treatment of wastewater contaminated with aromatic hydrocarbons and phenolic compounds. Journal of Environmental Chemical Engineering, 5(4), 3852–3864. https://doi.org/10.1016/j.jece.2017.07.053

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author (Ganesh Swain) is gratefully acknowledged the Ministry of Human Resource of Development, MHRD (India), for granting financial support and Indian Institute of Technology, BHU, Varanasi, India, for providing laboratory facility to carry out the research work. The author has also acknowledged the Scheme for Promotion of Academic and Research Collaboration, SPARC (India), for their immense cooperation.

Author information

Authors and Affiliations

Authors

Contributions

Ganesh Swain—methodology, data curation, writing (original draft).

Kanhaiya Lal Maurya—conceptualization, methodology, software.

Mohit Kumar—methodology, writing (original draft).

R.K. Sonwani—writing (review and editing).

R.S. Singh—supervision.

Ravi P. Jaiswal—investigation, formal analysis.

Birendra Nath Rai—supervision, visualization.

Corresponding author

Correspondence to Birendra Nath Rai.

Ethics declarations

Ethics Approval

This article does not contain any studies with human participants by any of the authors.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 763 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swain, G., Maurya, K.L., Kumar, M. et al. The Biodegradation of 4-Chlorophenol in a Moving Bed Biofilm Reactor Using Response Surface Methodology: Effect of Biogenic Substrate and Kinetic Evaluation. Appl Biochem Biotechnol 195, 5280–5298 (2023). https://doi.org/10.1007/s12010-022-03954-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03954-0

Keywords

Navigation