Skip to main content

Advertisement

Log in

Identification of Bioactive Pentacyclic Triterpenoids and Fatty Acid Derivatives from Cissus quadrangularis and C. rotundifolia Through Untargeted Metabolite Profiling

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Comparative metabolite profiling of crude extracts of leaf and stem of two medicinally important species of genus Cissus was performed. Gas Chromatography – Mass Spectrometry (GC-MS/MS) of methanoloic extracts of leaf and stem of Cissus rotundifolia revealed the presence of around 30 compounds, out of which 15 were identified through NIST14 library based on their mass spectral pattern. Some of the important metabolites included betulinaldehyde, methyl palmitate, β-amyrin acetate, 2-naphthol, 2-phenylethanol and myristic acid. Among these metabolites, betulinaldehyde was the most abundant compound with 36.44% relative abundance. In contrast, 36 compounds were detected in the aqueous and methanolic extracts of C. quadrangularis stem, out of which 21 compounds were identified through NIST14 library. Saturated fatty acids and ascorbic acid derivatives constitute the major fraction with 44.30% and 36.40% of the total peak area. In addition to these, coumaran, quinoline and trans-phytol were also identified in the extracts of C. quadrangularis. The comparative metabolite profiling showed higher percentage of betulinaldehyde (~ 36%) and lauric acid (19.42%) in C. rotundifolia while that of methyl palmitate (~ 0.76%) and coumaran (1.48%) in C. qudrangularis. Cissus species are medicinally known for their bone healing properties and the metabolic profiling of these herbs will further be utilised for identification and characterization of the novel bioactive compounds responsible for various medicinal properties.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Bertelli, A., & Das, D. (2009). Grapes, wines, resveratrol, and heart health. Journal of Cardiovascular Pharmacology, 54, 468–476

    Article  CAS  PubMed  Google Scholar 

  2. Das, D., Mukherjee, S., & Ray, D. (2011). Erratum to: resveratrol and red wine, healthy heart and longevity. Heart Failure Reviews, 16, 425–435

    Article  PubMed  Google Scholar 

  3. Mishra, G., Srivastava, S., & Nagori, B. (2010). Pharmacological and therapeutic activity of Cissus quadrangularis: An overview. International Journal of PharmTech Research, 2, 1298–1310

    Google Scholar 

  4. Stohs, S., & Ray, S. (2013). A review and evaluation of the efficacy and safety of Cissus quadrangularis extracts. Phytotherapy Research, 27, 1107–1114

    Article  PubMed  Google Scholar 

  5. Potu, B. K., Nampurath, G. K., Rao, M. S., & Bhat, K. M. (2011). Effect of Cissus quadrangularis Linn on the development of osteopenia induced by ovariectomy in rats. La Clinica Terapeutica, 162, 307–312

    CAS  PubMed  Google Scholar 

  6. Sen, M., & Dash, B. (2012). A review on phytochemical and pharmacological aspects of Cissus quadrangularis L. International Journal of Green Pharmacy, 6, 169–173

    Article  Google Scholar 

  7. Chanda, S., Baravalia, Y., & Nagani, K. (2013). Spectral analysis of methanol extract of Cissus quadrangularis L. stem and its fractions. Journal of Pharmacognosy and Phytochemistry, 2, 149–157

  8. Murthy, K., Vanitha, A., Swamy, M., & Ravishankar, G. (2003). Antioxidant and antimicrobial activity of Cissus quadrangularis L. Journal of Medicinal Food, 6, 99–105

    Article  Google Scholar 

  9. Kumar, S., Anandan, A., & Jegadeesan, M. (2012). Identification of chemical compounds in Cissus quadrangularis L. Variant I of different samples using GC-MS analysis. Archives of Applied Science Research, 4, 1782–1787

    Google Scholar 

  10. Jainu, M., & Devi, C. (2006). Gastroprotective action of Cissus quadrangularis extract against NSAID induced gastric ulcer: role of proinflammatory cytokines and oxidative damage. Chemico-Biological Interactions, 161, 262–270

    Article  CAS  PubMed  Google Scholar 

  11. Mate, G., Naikwade, N., Magdum, C., Chowki, A., & Patil, S. (2008). Evaluation of anti-nociceptive activity of Cissus quadrangularis on albino mice. International Journal of Green Pharmacy, 2, 118–121

    Article  Google Scholar 

  12. Vijayalakshmi, G., Aysha, O., & Valli, S. (2015). Antibacterial and phytochemical analysis of cissus quadrangularis on selected uti pathogens and molecular characterization for phylogenetic analysis of Klebsiella pneumoniae. World Journal Pharmacy and Pharmaceutical Science, 4, 1702–1713

    CAS  Google Scholar 

  13. Shirley, D., & Sen, S. (1966). Ray photoemission studies on the active constituents of Cissus quadrangularis. Current Science, 35, 317

  14. Enechi, O., & Odonwodo, I. (2003). An assessment of the phytochemical and nutrient composition of the pulverized root of Cissus quadrangularis. Bio-research, 1, 63–68

  15. Korish, M. (2016). Nutritional evaluation of wild plant Cissus rotundifolia Italian Journal of Food Science, 28, 43–49

    Google Scholar 

  16. Fiehn, O., Kopka, J., Dörmann, P., Altmann, T., Trethewey, R. N., & Willmitzer, L. (2000). Metabolite profiling for plant functional genomics. Nature Biotechnology, 18, 1157–1161

    Article  CAS  PubMed  Google Scholar 

  17. Chatterjee, S., Srivastava, S., Khalid, A., Singh, N., Sangwan, R. S., Sidhu, O. P., & Tuli, R. (2010). Comprehensive metabolic fingerprinting of Withania somnifera leaf and root extracts. Phytochemistry, 71, 1085–1094

    Article  CAS  PubMed  Google Scholar 

  18. Hamed, A., Mantawy, E., El-Bakly, W., Abdel-Mottaleb, Y., & Azab, S. (2020). Methyl palmitate: the naturally occurring cardioprotective agent. Archives of Pharmaceutical Sciences Ain Shams University, 4, 47–62

    Article  Google Scholar 

  19. Hamed, A. B., Mantawy, E. M., El-Bakly, W. M., Abdel-Mottaleb, Y., & Azab, S. S. (2020). Putative anti-inflammatory, antioxidant, and anti-apoptotic roles of the natural tissue guardian methyl palmitate against isoproterenol-induced myocardial injury in rats. Future Journal of Pharmaceutical Sciences, 6, 1–14

    Article  Google Scholar 

  20. Arab, H. H., Salama, S. A., Eid, A. H., Kabel, A. M., & Shahin, N. N. (2019). Targeting MAPKs, NF-κB, and PI3K/AKT pathways by methyl palmitate ameliorates ethanol‐induced gastric mucosal injury in rats. Journal of Cellular Physiology, 234, 22424–22438

    Article  CAS  PubMed  Google Scholar 

  21. Temiz, C., Kalemci, S., Micili, S., Tekmen, I., Yildiz, G., Acar, T., & Akkoclu, A. (2015). The effect of methyl palmitate on treatment of experimental asthma. The Journal of the Pakistan Medical Association, 65, 632–636

    PubMed  Google Scholar 

  22. Cai, P., Kaphalia, B., & Ansari, G. (2005). Methyl palmitate: inhibitor of phagocytosis in primary rat Kupffer cells. Toxicology, 210, 197–204

    Article  CAS  PubMed  Google Scholar 

  23. Sarkar, S., Khan, M., Kaphalia, B., & Ansari, G. (2006). Methyl palmitate inhibits lipopolysaccharide-stimulated phagocytic activity of rat peritoneal macrophages. Journal of Biochemical and Molecular Toxicology, 20, 302–308

    Article  CAS  PubMed  Google Scholar 

  24. Mantawy, E., Tadros, M., Awad, A., Hassan, D., & El-Demerdash, E. (2012). Insights antifibrotic mechanism of methyl palmitate: impact on nuclear factor kappa B and proinflammatory cytokines. Toxicology and Applied Pharmacology, 258, 134–144

    Article  CAS  PubMed  Google Scholar 

  25. Wang, Y., Wang, H., Shen, Z., Zhao, L., Clarke, S., Sun, J., & Shi, G. (2009). Methyl palmitate, an acaricidal compound occurring in green walnut husks. Journal of Economic Entomology, 102, 196–202

    Article  CAS  PubMed  Google Scholar 

  26. Lee, Y., Chang, H., Liu, C., Chen, M., Chen, P., Kuo, J., & Lee, T. (2010). Methyl palmitate: a potent vasodilator released in the retina. Investigative Ophthalmology & Visual Science, 51, 4746–4753

    Article  Google Scholar 

  27. Hata, K., Hori, K., & Takahashi, S. (2002). Differentiation-and apoptosis-inducing activities by pentacyclic triterpenes on a mouse melanoma cell line. Journal of Natural Products, 65, 645–648

    Article  CAS  PubMed  Google Scholar 

  28. Abdel Bar, F. M., Zaghloul, A. M., Bachawal, S. V., Sylvester, P. W., Ahmad, K. F., & Sayed, E. (2008). Antiproliferative triterpenes from Melaleuca ericifolia Journal of Natural Products, 71, 1787–1790

    Article  CAS  PubMed  Google Scholar 

  29. Hiroya, K., Takahashi, T., Miura, N., Naganuma, A., & Sakamoto, T. (2002). Synthesis of betulin derivatives and their protective effects against the cytotoxicity of cadmium. Bioorganic & Medicinal Chemistry, 10, 3229–3236

    Article  CAS  Google Scholar 

  30. Hodon, J., Borkova, L., Pokorny, J., Kazakova, A., & Urban, M. (2019). Design and synthesis of pentacyclic triterpene conjugates and their use in medicinal research. European Journal of Medicinal Chemistry, 182, 111653

    Article  CAS  PubMed  Google Scholar 

  31. Tung, N., Kwon, H., Kim, J., Ra, J., Kim, J., & Kim, Y. (2010). An anti-influenza component of the bark of Alnus japonica Archives of Pharmacal Research, 33, 363–367

    Article  CAS  PubMed  Google Scholar 

  32. Dorr, C., Yemets, S., Kolomitsyna, O., Krasutsky, P., & Mansky, L. (2011). Triterpene derivatives that inhibit human immunodeficiency virus type 1 replication. Bioorganic Med. Chem. Lett, 21, 542–545

    Article  CAS  Google Scholar 

  33. Morrison, S. A., Li, H., Webster, D., Johnson, J. A., & Gray, C. A. (2016). Antimycobacterial triterpenes from the Canadian medicinal plant Sarracenia purpurea. Journal of Ethnopharmacology, 188, 200–203

    Article  CAS  PubMed  Google Scholar 

  34. Yang, F., Zhang, R., Ni, D., Luo, X., Chen, S., Luo, C., & Xiao, W. (2019). Discovery of betulinaldehyde as a natural RORγt agonist. Fitoterapia, 137, 104200

    Article  CAS  PubMed  Google Scholar 

  35. da Silva Júnior, W. F., de Menezes, B., de Oliveira, D. L., Koester, L. C., Oliveira de Almeida, L. S., Lima, P. D. … Neves de Lima, A. (2019). Inclusion complexes of β and HPβ-cyclodextrin with α, β amyrin and in vitro anti-inflammatory activity. Biomolecules, 9, 241

  36. Xu, W., Zhang, H., Zhang, Q., & Xu, J. (2022). β-Amyrin ameliorates diabetic nephropathy in mice and regulates the miR‐181b‐5p/HMGB2 axis in high glucose‐stimulated HK‐2 cells. Environmental Toxicology, 37, 637–649

  37. Park, H. J., Kwon, H., Lee, J. H., Cho, E., Lee, Y. C., Moon, M., & Jung, J. W. (2020). β-Amyrin ameliorates Alzheimer’s disease-like aberrant synaptic plasticity in the mouse hippocampus. Biomolecules & Therapeutics, 28, 74–82

  38. Etschmann, M., & Schrader, J. (2006). An aqueous–organic two-phase bioprocess for efficient production of the natural aroma chemicals 2-phenylethanol and 2-phenylethylacetate with yeast. Applied Microbiology and Biotechnology, 71, 440–443

    Article  CAS  PubMed  Google Scholar 

  39. Farag, M., & Al-Mahdy, D. (2013). Comparative study of the chemical composition and biological activities of Magnolia grandiflora and Magnolia virginiana flower essential oils. Natural Product Research, 27, 1091–1097

    Article  CAS  PubMed  Google Scholar 

  40. Wani, M., Sanjana, K., Kumar, D., & Lal, D. (2010). GC–MS analysis reveals production of 2–Phenylethanol from Aspergillus niger endophytic in rose. Journal of Basic Microbiology, 50, 110–114

    Article  CAS  PubMed  Google Scholar 

  41. Zhang, W., Ruan, W., Deng, Y., & Gao, Y. (2012). Potential antagonistic effects of nine natural fatty acids against Meloidogyne incognita Journal of Agricultural and Food Chemistry, 60, 11631–11637

    Article  CAS  PubMed  Google Scholar 

  42. Dabadie, H., Peuchant, E., Bernard, M., LeRuyet, P., & Mendy, F. (2005). Moderate intake of myristic acid in sn-2 position has beneficial lipidic effects and enhances DHA of cholesteryl esters in an interventional study. The Journal of Nutritional Biochemistry, 16, 375–382

    Article  CAS  PubMed  Google Scholar 

  43. Hentzer, M., Wu, H., Andersen, J., Riedel, K., Rasmussen, T., Bagge, N., & Kristoffersen, P. (2003). Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. The Embo Journal, 22, 3803–3815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dayrit, F. (2015). The properties of lauric acid and their significance in coconut oil. Journal of the American Oil Chemists' Society, 92, 1–15

    Article  CAS  Google Scholar 

  45. Sharma, V., Das, R., Mehta, D. K., Sharma, D., & Sahu, R. K. (2022). Exploring quinolone scaffold: Unravelling the chemistry of anticancer drug design. Mini Reviews in Medicinal Chemistry, 22, 69–88

    Article  CAS  PubMed  Google Scholar 

  46. Senerovic, L., Opsenica, D., Moric, I., Aleksic, I., Spasić, M., & Vasiljevic, B. (2020). Quinolines and quinolones as antibacterial, antifungal, anti-virulence, antiviral and anti-parasitic agents. Advances in Experimental Medicine and Biology, 1282, 37–69

Download references

Acknowledgements

Authors would like to acknowledge the Department of Botany, IIS (Deemed to be University), Jaipur for providing all the laboratory facilities that were required to conduct the experiments related to this work. We would also acknowledge Dr. Jitendra Mittal, Manager, AyushRaj Ent. Pvt. Ltd., Jaipur for performing GC-MS.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Smita Purohit, Rohit Jain and Manoj Kumar Bohra. The first draft of the manuscript was written by Smita Purohit and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Rohit Jain.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Conflict of Interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Purohit, S., Bohra, M.K. & Jain, R. Identification of Bioactive Pentacyclic Triterpenoids and Fatty Acid Derivatives from Cissus quadrangularis and C. rotundifolia Through Untargeted Metabolite Profiling. Appl Biochem Biotechnol 195, 2235–2251 (2023). https://doi.org/10.1007/s12010-022-03940-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03940-6

Keywords

Navigation