Skip to main content

Advertisement

Log in

Phytochemical Screening and Bioactivity Studies of Endophytes Cladosporium sp. Isolated from the Endangered Plant Vateria Indica Using In Silico and In Vitro Analysis

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Vateria indica is persistent tree used in Unani sources for the medication and classified as critically endangered. Thus, endophytes for alternative methods to explore these endangered Plants having rich source pharmaceuticals’ active molecules for drug development and production. Endophytes comprises unexplored microbes as a potential source of rich pharmaceutically bioactive compounds attributable to their relationship with the host. In the current study, we have isolated endophyte fungi Cladosporium from the plant Vateria indica and performed phytochemical screening of its ethanolic extract to detect the phytochemicals using thin layer chromatography (TLC), gas chromatography–mass spectrometry (GC–MS), high-performance liquid chromatography (HPLC), UV–visible spectrophotometry (UV–VIS), and Fourier transform infrared spectroscopy (FTIR). GC–MS analysis revealed the presence of an anticancer compound hydroxymethyl colchicine, antioxidant compound benzoic acid, and antimicrobial 2-(4-chlorophenoxy)-5-nitro in endophyte fungal extract of plant Vateria indica. Moreover, in silico analysis of bioactive compounds identified by GC–MS analysis using the Autodock Vina and SwissADME confirmed excellent anticancer activity methanone, [4-amino-2-[(phenylmethyl) amino]-5-thiazolyl] (4-fluorophenyl)- and hydroxymethyl colchicine against 6VO4 (Bfl-1 protein) as per Lipinski rule. Furthermore, we also demonstrated the excellent antioxidant of endophytic extract compared to plant extract by DPPH and ABTS assay, as well as antimicrobial activity against both Gram (+ ve) and Gram (− ve) bacteria. Moreover, the endophytic extract also showed its antimitotic activity with a mitotic index of 65.32, greater than the plant extract of 32.56 at 10 mg/ml. Thus endophytic fungi Cladosporium species isolated from plant Vateria indica might be used as a potential source for phytochemical anticancer hydroxymethyl colchicine, an antioxidant benzoic acid, and antimicrobial 2-(4-chlorophenoxy)-5-nitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Authors will make availability of data and materials on reasonable request.

References

  1. Cragg, G. M., Grothaus, P. G., & Newman, D. J. (2014). New horizons for old drugs and drug leads. Journal of natural products, 77(3), 703–723.

    Article  CAS  PubMed  Google Scholar 

  2. Chaitanyakumar, A., et al. (2021). Biogenically engineered silver nanoparticles using bael leaf extract and evaluation of its therapeutic potential. Materials Technology, 1–12.

  3. Sarkar, T., et al. (2021). Phytochemical characterization, antioxidant, anti-inflammatory, anti-diabetic properties, molecular docking, pharmacokinetic profiling, and network pharmacology analysis of the major phytoconstituents of raw and differently dried Mangifera indica (Himsagar cultivar): An in vitro and in silico investigations. Applied Biochemistry and Biotechnology, 1–38.

  4. Hazra, S. K., et al. (2020). Characterization of phytochemicals, minerals and in vitro medicinal activities of bael (Aegle marmelos L.) pulp and differently dried edible leathers. Heliyon, 6(10), e05382.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ghosh, S., et al. (2022). Phytocompound mediated blockage of quorum sensing cascade in ESKAPE pathogens. Antibiotics, 11(1), 61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bharadwaj, K. K., et al. (2021). Current strategies in inhibiting biofilm formation for combating urinary tract infections: Special focus on peptides, nano-particles and phytochemicals. Biocatalysis and Agricultural Biotechnology, 38, 102209.

    Article  CAS  Google Scholar 

  7. Chopra, B., & Dhingra, A. K. (2021). Natural products: A lead for drug discovery and development. Phytotherapy Research.

  8. Kenstavičienė, P., et al. (2009). Application of high-performance liquid chromatography for research of salicin in bark of different varieties of Salix. Medicina, 45(8), 644.

    Article  PubMed  Google Scholar 

  9. Siddiqui, A., Tabassum, K., Aisha Anjum, A. (2019). Pharmacological activities of Kahruba (Vateria indica Linn.)–A literary review.

  10. Khare, C. (2004). Valeriana wallichii DC.

  11. Sasikumar, P., et al. (2016). Comparison of antidiabetic potential of (+) and (−)-hopeaphenol, a pair of enantiomers isolated from Ampelocissus indica (L.) and Vateria indica Linn., with respect to inhibition of digestive enzymes and induction of glucose uptake in L6 myotubes. RSC Advances, 6(80), 77075–77082.

    Article  CAS  Google Scholar 

  12. Sinu, P. A., & Shivanna, K. (2016). Factors affecting recruitment of a critically-endangered dipterocarp species, Vateria indica in the Western Ghats, India. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 86(4), 857–862.

    Article  Google Scholar 

  13. Leifert, C., Ritchie, J., & Waites, W. (1991). Contaminants of plant-tissue and cell cultures. World Journal of Microbiology and Biotechnology, 7(4), 452–469.

    Article  CAS  PubMed  Google Scholar 

  14. Gupta, S. D., & Ibaraki, Y. (2006). Plant tissue culture engineering. Springer.

    Book  Google Scholar 

  15. Dinesh, R., et al. (2017). Endophytic actinobacteria: Diversity, secondary metabolism and mechanisms to unsilence biosynthetic gene clusters. Critical Reviews in Microbiology, 43(5), 546–566.

    Article  CAS  PubMed  Google Scholar 

  16. Bagur, H., et al. (2020). Endophyte fungal isolate mediated biogenic synthesis and evaluation of biomedical applications of silver nanoparticles. Materials Technology, 1–12.

  17. Bagur, H., et al. (2020). Biogenically synthesized silver nanoparticles using endophyte fungal extract of Ocimum tenuiflorum and evaluation of biomedical properties. Journal of Cluster Science, 31(6), 1241–1255.

    Article  CAS  Google Scholar 

  18. Bagur, H., et al. (2019). Biogenically synthesized silver nanoparticles using endophyte fungal extract of Ocimum tenuiflorum and evaluation of biomedical properties. Journal of Cluster Science, 1–15.

  19. Kushwaha, R. K., et al. (2019). Fungal endophytes attune withanolide biosynthesis in Withania somnifera, prime to enhanced withanolide A content in leaves and roots. World Journal of Microbiology and Biotechnology, 35(2), 20.

    Article  PubMed  Google Scholar 

  20. Hazra, S. K., et al. (2020). Characterization of phytochemicals, minerals and in vitro medicinal activities of bael (Aeglemarmelos L.) pulp and differently dried edible leathers. Heliyon, 6(10), e05382.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bharti, A., & Jeyaseelan, C. A stability indicating UV-HPLC method for the determination of potential impurities in nandrolone phenylpropionate active pharmaceutical ingredient. ACTA Pharmaceutica Sciencia.

  22. Zaheer, J., et al. (2021). Phytochemical profile of rock Jasmine (Androsace foliosa Duby ex Decne) by using HPLC and GC–MS analyses. Arabian Journal for Science and Engineering, 46(6), 5385–5392.

    Article  CAS  Google Scholar 

  23. Munshi, M., et al. (2021). Evaluation of bioactivity and phytochemical screening of endophytic fungi isolated from Ceriops decandra (Griff.) W. Theob, a mangrove plant in Bangladesh. Clinical Phytoscience, 7(1), 1–10.

    Article  Google Scholar 

  24. Harborne, J. (1998). Phytochemical methods: A guide to modern techniques of plant analysis. Champman and Hall.

    Google Scholar 

  25. Sudha, G., & Balasundaram, A. (2018). Analysis of bioactive compounds in Padina pavonica using HPLC, UV-VIS and FTIR techniques. J. Pharmacogn. Phytochem, 7, 3192–3195.

    CAS  Google Scholar 

  26. Samee, W., & Vorarat, S. (2007). Simultaneous determination of gallic acid, catechin, rutin, ellagic acid and quercetin in flower extracts of Michelia alba, Caesalpinia pulcherrima and Nelumbo nucifera by HPLC. Thai Pharm. Health Sci. J, 2, 131–137.

    Google Scholar 

  27. Harvey, E. P., et al. (2020). Identification of a covalent molecular inhibitor of anti-apoptotic BFL-1 by disulfide tethering. Cell Chemical Biology, 27(6), 647-656. e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pan, K., et al. (2014). pH-driven encapsulation of curcumin in self-assembled casein nanoparticles for enhanced dispersibility and bioactivity. Soft Matter, 10(35), 6820–6830.

    Article  CAS  PubMed  Google Scholar 

  29. Somu, P., & Paul, S. (2021). Surface conjugation of curcumin with self-assembled lysozyme nanoparticle enhanced its bioavailability and therapeutic efficacy in multiple cancer cells. Journal of Molecular Liquids, 338, 116623.

    Article  CAS  Google Scholar 

  30. Majewska, A., et al. (2003). Antimitotic effect, G2/M accumulation, chromosomal and ultrastructure changes in meristematic cells of Allium cepa L. root tips treated with the extract from Rhodiola rosea roots. Caryologia, 56(3), 337–351.

    Article  Google Scholar 

  31. Prasad, K. V., Muthu, S., & Santhamma, C. (2017). Spectroscopic (FT-IR, FT-Raman, UV–visible) and quantum chemical studies of 4-chloro-3-iodobenzophenone. Journal of Molecular Structure, 1128, 685–693.

    Article  Google Scholar 

  32. Sahu, N., & Saxena, J. (2013). Phytochemical analysis of Bougainvillea glabra Choisy by FTIR and UV-vis spectroscopic analysis. International Journal of Pharmaceutical Sciences Review and Research, 21(1), 196–198.

    Google Scholar 

  33. Hemmalakshmi, S., Priyanga, S., & Devaki, K. (2017). Fourier transform infra-red spectroscopy analysis of Erythrina variegata L. Journal of Pharmaceutical Sciences and Research, 9(11), 2062–2067.

    CAS  Google Scholar 

  34. Zha, H.-G., Lee, W.-H., & Zhang, Y. (2001). Cloning of cDNAs encoding C-type lectins from Elapidae snakes Bungarus fasciatus and Bungarus multicinctus. Toxicon, 39(12), 1887–1892.

    Article  CAS  PubMed  Google Scholar 

  35. Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 1–13.

    Article  Google Scholar 

  36. Saboo, S. S., Khadabadi, S., & Tapadiya, G. G. (2012). In vitro evaluation of antimitotic, antiproliferative, DNA fragmentation and anticancer activity of chloroform and ethanol extracts of Revia hypocrateriformis. Asian Pacific Journal of Tropical Disease, 2, S503–S508.

    Article  Google Scholar 

  37. Kumar, V. L., & Singhal, A. (2009). Germinating seeds of the mung bean, Vigna radiata (Fabaceae), as a model for the preliminary evaluation of cytotoxic effects of drugs. Biocell, 33(1), 19–24.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Prathap Somu (lead), Yerappa Lakshmikanth Ramachandra, Chandrappa Chinna Poojari, and Yong Rok Lee; data collection, data analysis, and interpretation: Mona Isaq, Pooja Ravi, Diptikanta Acharya, and Jesse Joel Thathapudi; drafting the article: Pooja Ravi, Levin Anbu Gomez, Sunitha Bommanahalli Rudraiah, and Jesse Joel Thathapudi; critical revision of the article and approved: Prathap Somu and Yong Rok Lee.

Corresponding authors

Correspondence to Prathap Somu, Chandrappa Chinna Poojari or Yong Rok Lee.

Ethics declarations

Ethics Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isaq, M., Somu, P., Acharya, D. et al. Phytochemical Screening and Bioactivity Studies of Endophytes Cladosporium sp. Isolated from the Endangered Plant Vateria Indica Using In Silico and In Vitro Analysis. Appl Biochem Biotechnol 194, 4546–4569 (2022). https://doi.org/10.1007/s12010-022-03933-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03933-5

Keywords

Navigation