Skip to main content
Log in

Vibrio spp. and Their Vibriocin as a Vibriosis Control Measure in Aquaculture

  • Review
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Vibriosis disease is a major threat to the aquaculture industry caused by Vibrio spp. that are often resistant to antibiotics. Alternative controlling measures such as bacteriocins could be effective due to their narrow-spectrum activity. Hence, this systematic literature review (SLR) was carried out to review the feasibility of Vibrio spp. and their vibriocins to be used as a vibriosis control measure in aquaculture. A literature search using the web of science (WOS) and SCOPUS databases resulted in 42 unique articles which were reviewed. The results showed that Vibrio spp. could be used as a probiotic to control vibriosis, but not recommended due to their opportunistic nature and pathogenesis. Vibriocin showed narrow-spectrum activity against Vibrio spp. including highly pathogenic strains such as V. alginolyticus, V. harveyi, and V. parahaemolyticus. This supported this review’s hypothesis of using vibriocin as a targeted vibriosis control measure. Vibrio cholerae was the most studied and showed the highest inhibition range, inhibiting 13 different vibrio and non-vibrio species. Various innovations were reported in the field and vibriocins can now be produced on large scales using whole-cell culture. Vibriocins were structurally diverse, large molecular weight, and relatively heat stable. These vibriocins mainly inhibited the cell wall but could have other novel mechanisms. These properties could affect the extraction process as well as applications in aquaculture, hence, should be considered in future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

All the data and resources used have been mentioned in the manuscript and supplementary table.

References

  1. Pang, H., Chang, Y., Zheng, H., Tan, H., Zhou, S., Zeng, F., & Ding, Y. (2022). A live attenuated strain of HY9901ΔvscB provides protection against Vibrio alginolyticus in pearl gentian grouper (♀ Epinephelus fuscoguttatus×♂ Epinephelus lanceolatu). Aquaculture, 546, 737353.

    Article  CAS  Google Scholar 

  2. Mohamad, A., Mursidi, F. A., Zamri-Saad, M., Amal, M. N. A., Annas, S., Monir, M. S., & Ina-Salwany, M. Y. (2022). Laboratory and field assessments of oral Vibrio vaccine indicate the potential for protection against vibriosis in cultured marine fishes. Animals, 12(2), 133.

    Article  Google Scholar 

  3. Montánchez, I., & Kaberdina, V. R. (2020). Vibrio harveyi: a brief survey of general characteristics and recent epidemiological traits associated with climate change. Marine environmental research, 154, 104850.

    Article  Google Scholar 

  4. Rather, I. A., Galope, R., Bajpai, V. K., Lim, J., Paek, W. K., & Park, Y. H. (2017). Diversity of marine bacteria and their bacteriocins: Applications in aquaculture. Reviews in Fisheries Science & Aquaculture, 25(4), 257–269.

    Article  Google Scholar 

  5. Shin, J. M., Gwak, J. W., Kamarajan, P., Fenno, J. C., Rickard, A. H., & Kapila, Y. L. (2016). Biomedical applications of nisin. Journal of applied microbiology, 120(6), 1449–1465.

    Article  CAS  Google Scholar 

  6. Wahba, A. H. (1965). Vibriocine production in the cholera and El Tor vibrios. Bulletin of the World Health Organization, 33(5), 661–664.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Hoyt, P. R., & Sizemore, R. K. (1982). Competitive dominance by a bacteriocin-producing Vibrio harveyi strain. Applied and Environmental Microbiology, 44(3), 653–658. https://doi.org/10.1128/aem.44.3.653-658.1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. McCall, J. O., & Sizemore, R. K. (1979). Description of a bacteriocinogenic plasmid in Beneckea harveyi. Applied and Environmental Microbiology, 38(5), 974–979. https://doi.org/10.1128/aem.38.5.974-979.1979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu, X., Wang, Z., Zhu, D., Wei, T., Gu, L., & Xu, S. (2011). Crystallization and preliminary X-ray crystallographic studies of VibE, a vibriobactin-specific 2,3-dihydroxybenzoate-AMP ligase from Vibrio cholerae. Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 67(12), 1563–1565. https://doi.org/10.1107/S1744309111039005

    Article  CAS  PubMed Central  Google Scholar 

  10. Bindiya, E., & Bhat, S. (2016). Marine bacteriocins: A review. J Bacteriol Mycol Open Access, 2(5), 00040.

    Google Scholar 

  11. Ha, T. Y., & Whang, H. S. (1992). Production of and sensitivity to bacteriocin, ‘vulnificin’ of Vibrio vulnificus. Journal of the Korean Society for Microbiology, 27(3), 215–230.

    CAS  Google Scholar 

  12. Burks, D. J., Norris, S., Kauffman, K. M., Joy, A., Arevalo, P., Azad, R. K., & Wildschutte, H. (2017). Environmental vibrios represent a source of antagonistic compounds that inhibit pathogenic Vibrio cholerae and Vibrio parahaemolyticus strains. MicrobiologyOpen, 6(5), e00504. https://doi.org/10.1002/mbo3.504

  13. Balakrishnan, B., Ranishree, J. K., Thadikamala, S., & Panchatcharam, P. (2014). Purification, characterization and production optimization of a vibriocin produced by mangrove associated Vibrio parahaemolyticus. Asian Pacific Journal of Tropical Biomedicine, 4(4), 253–261. https://doi.org/10.12980/APJTB.4.2014C947

    Article  PubMed  PubMed Central  Google Scholar 

  14. Thompson, J., Gregory, S., Plummer, S., Shields, R. J., & Rowley, A. F. (2010). An in vitro and in vivo assessment of the potential of Vibrio spp. as probiotics for the Pacific White shrimp, Litopenaeus vannamei. Journal of Applied Microbiology, 109(4), 1177–1187.

    Article  CAS  Google Scholar 

  15. Serrano, W., Tarazona, U. I., Olaechea, R. M., & Friedrich, M. W. (2018). Draft genome sequence of a new Vibrio strain with the potential to produce bacteriocin-like inhibitory substances, isolated from the gut microflora of scallop (Argopecten purpuratus). Genome Announcements, 6(20), e00419-18. https://doi.org/10.1128/genomeA.00419-18

  16. Selvendran, M., & Babu, M. (2013). Studies on Novel bacteriocin like inhibitory substance (BLIS) from microalgal symbiotic Vibrio spp MMB2 and its activity against aquatic bacterial pathogens. Journal of Applied Pharmaceutical Science, 3(2), 169–175.

    Google Scholar 

  17. Liu, N., Zhang, S., Zhang, W., & Li, C. (2017). Vibrio sp. 33 a potential bacterial antagonist of Vibrio splendidus pathogenic to sea cucumber (Apostichopus japonicus). Aquaculture, 470, 68–73. https://doi.org/10.1016/j.aquaculture.2016.12.028

    Article  CAS  Google Scholar 

  18. Balcazar, J. L., Loureiro, S., Da Silva, Y. J., Pintado, J., & Planas, M. (2010). Identification and characterization of bacteria with antibacterial activities isolated from seahorses (Hippocampus guttulatus). Journal of Antibiotics, 63(5), 271–274. https://doi.org/10.1038/ja.2010.27

    Article  CAS  PubMed  Google Scholar 

  19. Farkas-Himsley, H., & Seyfried, P. L. (1962). Lethal biosynthesis of a new antibacterial principle: Vibriocin. Nature, 193(4821), 1193–1194. https://doi.org/10.1038/1931193a0

    Article  CAS  PubMed  Google Scholar 

  20. Datta, A., & Prescott, L. M. (1969). Effect of vibriocins on members of the Enterobacteriaceae. Journal of Bacteriology, 98(2), 849–850. https://doi.org/10.1128/jb.98.2.849-850.1969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brandis, H. (1978). Chapter VI Vibriocin Typing. In T. Bergan & J. R. Norris (Eds.), Methods in Microbiology (Vol. 12, pp. 117–126). UK: Academic Press. https://doi.org/10.1016/S0580-9517(08)70360-X

    Chapter  Google Scholar 

  22. Mitra, S., Balganesh, T. S., Dastidar, S. G., & Chakrabarty, A. N. (1980). Single bacteriocin typing scheme for the vibrio group of organisms. Infection and Immunity, 30(1), 74–77. https://doi.org/10.1128/iai.30.1.74-77.1980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shehane, S. D., & Sizemore, R. K. (2002). Isolation and preliminary characterization of bacteriocins produced by Vibrio vulnificus. Journal of Applied Microbiology, 92(2), 322–328. https://doi.org/10.1046/j.1365-2672.2002.01533.x

    Article  CAS  PubMed  Google Scholar 

  24. Carraturo, A., Raieta, K., Ottaviani, D., & Russo, G. L. (2006). Inhibition of Vibrio parahaemolyticus by a bacteriocin-like inhibitory substance (BLIS) produced by Vibrio mediterranei 1. Journal of Applied Microbiology, 101(1), 234–241. https://doi.org/10.1111/j.1365-2672.2006.02909.x

    Article  CAS  PubMed  Google Scholar 

  25. Lang, D., McDonald, T. O., & Gardner, E. W. (1968). Electron microscopy of particles associated with a bacteriocinogenic Vibrio cholerae strain. Journal of Bacteriology, 95(2), 708–709. https://doi.org/10.1128/jb.95.2.708-709.1968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Smigocki, A. C., & Voll, M. J. (1986). Novel transmissible factors in a non-O1 Vibrio cholerae and a Vibrio sp. Journal of General Microbiology, 132(4), 1027–1033. https://doi.org/10.1099/00221287-132-4-1027

    Article  CAS  PubMed  Google Scholar 

  27. Sugita, H., Matsuo, N., Hirose, Y., Iwato, M., & Deguchi, Y. (1997). Vibrio sp. strain NM 10, isolated from the intestine of a Japanese coastal fish, has an inhibitory effect against Pasteurella piscicida. Applied and Environmental Microbiology, 63(12), 4986–4989. https://doi.org/10.1128/aem.63.12.4986-4989.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zai, A. S., Ahmad, S., & Rasool, S. A. (2009). Bacteriocin production by indigenous marine catfish associated Vibrio spp. Pakistan Journal of Pharmaceutical Sciences, 22(2), 162–167.

    CAS  PubMed  Google Scholar 

  29. Chakrabarty, A., Adhya, S., Basu, J., & Dastidar, S. G. (1970). Bacteriocin typing of Vibrio cholerae. Infection and Immunity, 1(3), 293–299.

    Article  CAS  Google Scholar 

  30. Felsenfeld, O., & Greer, W. E. (1968). Vibriocidal activity, immune globulin producing cells and immune globulin levels in Theropithecus gelada after administration of a Vibrio cholerae antigen. Immunology, 14(3), 319–324.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang, X. H., & Austin, B. (2000). Pathogenicity of Vibrio harveyi to salmonids. Journal of Fish Diseases, 23(2), 93–102. https://doi.org/10.1046/j.1365-2761.2000.00214.x

    Article  Google Scholar 

  32. Israil, A. M., Nacescu, N., Ciufecu, C., & Cedru, C. (1987). The development and application of a bacteriocinogenotyping scheme for Vibrio cholerae non-group O-1 strains. Zentralblatt fur Bakteriologie, Mikrobiologie, und Hygiene. Series A, Medical Microbiology, Infectious Diseases, Virology, Parasitology, 264(1–2), 235–245. https://doi.org/10.1016/S0176-6724(87)80144-X

  33. Israil, A. M., Nacescu, N., Ciufecu, C., & Stefanescu, C. (1983). Studies on bacteriocin production by NAG-strains of Vibrio cholerae as a possible epidemiologic marker. Zentralblatt fur Bakteriologie Mikrobiologie und Hygiene Abt Orig A, 255(23), 285–293.

    Article  CAS  Google Scholar 

  34. Farkas-Himsley, H., & Cheung, R. (1976). Bacterial proteinaceous products (bacteriocins) as cytotoxic agents of neoplasia. Cancer Research, 36(10), 3561–3567.

    CAS  PubMed  Google Scholar 

  35. Jayawardene, A., & Farkas-Himsley, H. (1968). Particulate nature of vibriocin: A bacteriocin from vibrio comma. Nature, 219(5149), 79–80. https://doi.org/10.1038/219079a0

    Article  CAS  PubMed  Google Scholar 

  36. Jayawardene, A., & Farkas-Himsley, H. (1970). Mode of action of vibriocin. Journal of Bacteriology, 102(2), 382–388.

    Article  CAS  Google Scholar 

  37. Arijo, S., Brunt, J., Chabrillón, M., Díaz-Rosales, P., & Austin, B. (2008). Subcellular components of Vibrio harveyi and probiotics induce immune responses in rainbow trout Oncorhynchus mykiss (Walbaum), against V harveyi. Journal of Fish Diseases, 31(8), 579–590. https://doi.org/10.1111/j.1365-2761.2008.00932.x

    Article  CAS  PubMed  Google Scholar 

  38. Cheng, S., Zhang, W. W., Zhang, M., & Sun, L. (2010). Evaluation of the vaccine potential of a cytotoxic protease and a protective immunogen from a pathogenic Vibrio harveyi strain. Vaccine, 28(4), 1041–1047. https://doi.org/10.1016/j.vaccine.2009.10.122

    Article  CAS  PubMed  Google Scholar 

  39. Prasad, S., Morris, P. C., Hansen, R., Meaden, P. G., & Austin, B. (2005). A novel bacteriocin-like substance (BLIS) from a pathogenic strain of Vibrio harveyi. Microbiology, 151(9), 3051–3058. https://doi.org/10.1099/mic.0.28011-0

    Article  CAS  PubMed  Google Scholar 

  40. Priya, S., Santhiya, S., & Jancy, B. (2011). Vibriocin production by marine prawn associated Vibrio spp. Biomedical and Pharmacology Journal, 4(1), 227–229. https://doi.org/10.13005/bpj/286

    Article  Google Scholar 

  41. Takeya, K., & Shimodori, S. (1969). New method for the detection of a lethal factor in vibrios. Journal of Bacteriology, 99(1), 339–340. https://doi.org/10.1128/jb.99.1.339-340.1969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chatterjee, S. N., & Maiti, M. (1984) Vibriophages and vibriocins: Physical, chemical, and biological properties. Vol. 29. Advances in Virus Research (pp. 263–312).

  43. Farkas-Himsley, H. (1980). Bacteriocins-are they broad-spectrum antibiotics? Journal of Antimicrobial Chemotherapy, 6(4), 424–427. https://doi.org/10.1093/jac/6.4.424

    Article  CAS  PubMed  Google Scholar 

  44. Tan, L., Gómez-Betancur, I., Guo, S., Ge, Y., Zhao, J., Chen, C., & Wang, N. (2020). Complete Genome of Vibrio neocaledonicus CGJ02-2, An active compounds producing bacterium isolated from South China Sea. Current Microbiology, 77(10), 2665–2673. https://doi.org/10.1007/s00284-020-02047-7

    Article  CAS  PubMed  Google Scholar 

  45. Somova, A. G., Ivanova, L. V., & Voronezhskaia, L. G. (1986). Importance of the vibriocinogenic factor in the ecology of Vibrio cholerae. Zhurnal Mikrobiologii Epidemiologii i Immunobiologii, 11, 59–63.

    Google Scholar 

  46. Badalova, I. M., Mishan’kin, B. N., & Suchkov, I. I. (1987). Genetic determination of the vibriocinogenicity trait in Vibrio cholerae of the El Tor biotype. Zhurnal Mikrobiologii Epidemiologii i Immunobiologii, 5, 24–28.

    Google Scholar 

  47. Basu, S., Chakrabarty, A. N., Ganguli, M., & Dastidar, S. G. (1990). Physical demonstration of a high molecular weight bacteriocin plasmid in Vibrio cholerae by genetic transformation process. The Indian Journal of Medical Research, 91, 120–123.

    CAS  PubMed  Google Scholar 

  48. Telesmanich, N. P., Vinokur, N. I., Men’shikova, E. A., & Nepomniashchaia, N. B. (2000). Bactericidal properties of hemo-cytolysin from Vibrio cholerae non O1 P-11702 strain in a panel of indicator cultures for detection of vibriocins. Zhurnal mikrobiologii, epidemiologii, i immunobiologii, 6, 74–76.

    Google Scholar 

  49. Bhaskaran, K. (1960). Recombination of characters between mutant stocks of Vibrio cholerae, strain 162. Microbiology, 23(1), 47–54.

    CAS  Google Scholar 

  50. Hernández-Cabanyero, C., Lee, C. T., Tolosa-Enguis, V., Sanjuán, E., Pajuelo, D., Reyes-López, F., & Amaro, C. (2019). Adaptation to host in Vibrio vulnificus, a zoonotic pathogen that causes septicemia in fish and humans. Environmental microbiology, 21(8), 3118–3139.

    Article  Google Scholar 

  51. Hernández-Cabanyero, C., Sanjuán, E., Fouz, B., Pajuelo, D., Vallejos-Vidal, E., Reyes-López, F. E., & Amaro, C. (2020). The effect of the environmental temperature on the adaptation to host in the zoonotic pathogen Vibrio vulnificus. Frontiers in microbiology, 11, 489.

    Article  Google Scholar 

  52. Phumisantiphong, U., Siripanichgon, K., Reamtong, O., & Diraphat, P. (2017). A novel bacteriocin from Enterococcus faecalis 478 exhibits a potent activity against vancomycin-resistant enterococci. PLoS One, 12(10), e0186415.

    Article  Google Scholar 

Download references

Funding

This work was supported by Talent and Publication Enhancement Research Grant (TAPE-RG) No. 55217 from University Malaysia Terengganu. We would like to thank the Centre for Research and Innovation Management (CRIM) for their assistance in gathering the resources needed in writing this review.

Author information

Authors and Affiliations

Authors

Contributions

H. I.: conceptualization, methodology, and original draft writing; A. J.: methodology and original draft writing; N. M.: review and editing of final draft and funding acquisition; L. A. R.: resources; MA: review and editing of the final draft; A. F.: validation and Formal analysis.

Corresponding author

Correspondence to Hassan Sheikh.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheikh, H., John, A., Musa, N. et al. Vibrio spp. and Their Vibriocin as a Vibriosis Control Measure in Aquaculture. Appl Biochem Biotechnol 194, 4477–4491 (2022). https://doi.org/10.1007/s12010-022-03919-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03919-3

Keywords

Navigation