Skip to main content

Advertisement

Log in

Molecular Docking and In Vitro Inhibitory Effect of Polyaniline (PANI)/ZnO Nanocomposite on the Growth of Struvite Crystal: a Step Towards Control of UTI

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Nowadays, nanotechnology is gaining interest on diagnostics for several chronic diseases. In the present study, the chemical oxidative method of aniline in acid medium with ammonium peroxydisulfate (APS) as an oxidant was employed to develop polyaniline (PANI)-based nanocomposite overflowing/doping on ZnO. The chemical properties, morphology, and structure of the polymer and nanocomposite were investigated using FTIR, XRD, and SEM. The characteristic FTIR peaks of PANI were reported to shift to a higher or lower wave number in PANI-doped ZnO composites due to the formation of H-bonding. Different amounts of ZnO nanoparticles were used to test this influence on the strength of the generated materials. The ability of the PANI-doped ZnO nanocomposite to inhibit struvite crystal growth was determined. The size of struvite crystals was condensed from 2.9 to 1.4 cm at a concentration of 5% PANI-doped ZnO nanoparticles, and the inhibition efficiency of synthesized PANI-doped ZnO against kidney stone (struvite) was confirmed by molecular docking analyzes. The in vitro as well as in silico study revealed the potential applications of polyaniline/ZnO nanocomposite in kidney diseases.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data and materials available from the first and corresponding authors are available on request.

References

  1. Patra, J. K., Das, G., Fraceto, L. F., Campos, E. V. R., Rodriguez-Torres, M. D. P., Acosta-Torres, L. S., & Shin, H. S. (2018). Nano based drug delivery systems: Recent developments and future prospects. Journal of Nanobiotechnology, 16(1), 1–33. https://doi.org/10.1186/s12951-018-0392-8

    Article  CAS  Google Scholar 

  2. Bustamante-Torres, M., Romero-Fierro, D., Arcentales-Vera, B., Pardo, S., & Bucio, E. (2021). Interaction between filler and polymeric matrix in nanocomposites: Magnetic Approach and applications. Polymers. https://doi.org/10.3390/polym13172998

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ameen, S., Akhtar, M. S., Ansari, S. G., Yang, O., & Shin, H. S. (2009). Electrophoretically deposited polyaniline/ZnO nanoparticles for p–n heterostructure diodes. Superlattices and Microstructures, 46(6), 872–880.

    Article  CAS  Google Scholar 

  4. Deng, J., He, C., Peng, Y., Wang, J., Long, X., Pei, L., & Chan, A. S. C. (2003). Magnetic and conductive Fe3O4–polyaniline nanoparticles with core–shell structure. Synthetic Metals, 139(3), 295–301.

    Article  CAS  Google Scholar 

  5. Jia, W., Segal, E., Kornemandel, D., Lamhot, Y., Narkis, M., & Siegmann, A. (2002). Polyaniline–DBSA/organophilic clay nanocomposites: Synthesis and characterization. Synthetic Metals, 128(1), 115–120. https://doi.org/10.1016/S0379-6779(01)00672-5

    Article  CAS  Google Scholar 

  6. Peng, C., Zhang, S., Jewell, D., & Chen, G. Z. (2008). Carbon nanotube and conducting polymer composites for supercapacitors. Progress in Natural Science, 18(7), 777–788. https://doi.org/10.1016/j.pnsc.2008.03.002

    Article  CAS  Google Scholar 

  7. Sathiyanarayanan, S., Karpakam, V., Kamaraj, K., Muthukrishnan, S., & Venkatachari, G. (2010). Sulphonate doped polyaniline containing coatings for corrosion protection of iron. Surface & Coatings Technology, 204(9–10), 1426–1431. https://doi.org/10.1016/j.surfcoat.2009.09.037

    Article  CAS  Google Scholar 

  8. Li, L., Jiang, J., & Xu, F. (2007). Synthesis and ferrimagnetic properties of novel Sm-substituted LiNi ferrite–polyaniline nanocomposite. Materials Letters, 61(4), 1091–1096. https://doi.org/10.1016/j.matlet.2006.06.061

    Article  CAS  Google Scholar 

  9. Ayad, M. M., & Zaki, E. A. (2008). Doping of polyaniline films with organic sulfonic acids in aqueous media and the effect of water on these doped films. European Polymer Journal, 44(11), 3741–3747. https://doi.org/10.1016/j.eurpolymj.2008.08.012

    Article  CAS  Google Scholar 

  10. Mo, T., Wang, H., Chen, S., & Yeh, Y. (2008). Synthesis and dielectric properties of polyaniline/titanium dioxide nanocomposites. Ceramics International, 34, 1767–1771.

    Article  CAS  Google Scholar 

  11. Liu, P. (2018). Preparation and characterization of conducting polyaniline/silica nanosheet composites. Current Opinion in Solid State and Materials Science, 12, 9–13.

    Article  Google Scholar 

  12. Jing, S., Xing, S., Yu, L., Wu, Y., & Zhao, C. (2007). Synthesis and characterization of Ag/polyaniline core–shell nanocomposites based on silver nanoparticles colloid. Materials Letters, 61, 2794–2797.

    Article  CAS  Google Scholar 

  13. Kim, B. H., Jung, J. H., Kim, J. W., Choi, H. J., & Joo, J. (2001). Physical characterization of polyaniline–Naþ–montmorillonite nanocomposite intercalated by emulsion polymerization. Synthetic Metals, 117, 115–118.

    Article  CAS  Google Scholar 

  14. He, Y. (2005). Synthesis of polyaniline/nano-CeO2 composite microspheres via solid-stabilized emulsion route. Materials Chemistry and Physics, 92, 134–137.

    Article  CAS  Google Scholar 

  15. Xue, W., Fang, K., Qiu, H., Li, J., & Mao, W. (2006). Electrical and magnetic propertiesoftheFe3O4–polyaniline nanocomposite pellets containing DBSA-doped polyaniline and HCl-doped polyaniline with Fe3O4 nanoparticles. Synthetic Metals, 156, 506–509.

    Article  CAS  Google Scholar 

  16. Olad, A., Barati, M., & Shirmohammadi, H. (2011). Conductivity and anticorrosion performance of polyaniline/zinc composites: Investigation of zinc particle size and distribution effect. Progress in Organic Coatings, 72, 599–604.

    Article  CAS  Google Scholar 

  17. Zhang, X., Ji, L., Zhang, S., & Yang, W. (2007). Synthesis of a novel polyaniline-intercalated layered manganese oxide nanocomposite as electrode material for electrochemical capacitor. Journal of Power Sources, 73, 1017–1023.

    Article  Google Scholar 

  18. Long, Y., Chen, Z., Wang, N., Li, J., & Wan, M. (2004). Electronic transporting PANI-CSA/PANI-DBSA polyblends. Physica B: CondensedMatter, 344, 82–87.

    Article  CAS  Google Scholar 

  19. Moezzi, A., McDonagh, A. M., & Cortie, M. B. (2012). Zinc oxide particles: Synthesis, properties and applications. Chemical Engineering Journal, 185–186, 1–22.

    Article  Google Scholar 

  20. Anitha, S., Brabu, B., Thiruvadigal, D. J., Gopalakrishnan, C., & Natarajan, T. S. (2012). Optical, bactericidal and water repellent properties of electrospun nano-composite membranes of cellulose acetate and ZnO. Carbohydrate Polymers, 87, 1065–1072.

    Article  CAS  Google Scholar 

  21. Amornpitoksuk, P., Suwanboon, S., Sangkanu, S., Sukhoom, A., & Muensit, N. (2012). Morphology, photocatalytic and antibacterial activities of radial spherical ZnO nanorods controlled with a diblock copolymer. Superlattices and Microstructures, 51, 103–113.

    Article  CAS  Google Scholar 

  22. Ma, X. Y., & Zhang, W. D. (2009). Effects of flower-like ZnO nanowhiskers on the mechanical, thermal and antibacterial properties of waterborne polyurethane. Polymer Degradation and Stability, 94, 1103–1109.

    Article  CAS  Google Scholar 

  23. Pragathiswaran, C., Thulasi, G., Al-ansari, M. M., Al-humaid, L. A., & Saravanan, M. (2021). Experimental investigation and electrochemical characterization of titanium coated nanocomposite materials for biomedical applications. Journal of Molecular Structure, 1231, 129932. https://doi.org/10.1016/j.molstruc.2021.129932

    Article  CAS  Google Scholar 

  24. Wu, C., Qiao, X., Chen, J., Wang, H., Tan, F., & Li, S. (2006). A novel chemical route to prepare ZnO nanoparticles. Materials Letters, 60, 1828–1832.

    Article  CAS  Google Scholar 

  25. Kalaiarasi, J., Pragathiswaran, C., & Subramani, P. (2021). Green chemistry approach for the functionalization of re duce d graphene and ZnO as efficient supercapacitor application. Journal of Molecular Structure, 1242, 130704. https://doi.org/10.1016/j.molstruc.2021.130704

    Article  CAS  Google Scholar 

  26. Pragathiswaran, C., Smitha, C., Barabadi, H., Al-Ansari, M. M., Al-Humaid, L. A., & Saravanan, M. (2020). TiO2@ZnO nanocomposites decorated with gold nanoparticles: Synthesis, characterization and their antifungal, antibacterial, anti-inflammatory and anticancer activities. Inorganic Chemistry Communications, 121, 108210. https://doi.org/10.1016/j.inoche.2020.108210

    Article  CAS  Google Scholar 

  27. Renganathan, S., Manokaran, S., Vasanthakumar, P., Singaravelu, U., Kim, P., Kutzner, A., & Heese, K. (2021). Phytochemical profiling in conjunction with in vitro and in silico studies to identify human α-amylase inhibitors in Leucaena leucocephala (Lam.) De Wit for the treatment of diabetes mellitus. ACS omega, 6(29), 19045–19057.

    Article  CAS  Google Scholar 

  28. Senthil, R., Sakthivel, M., & Usha, S. (2021). Structure-based drug design of peroxisome proliferator-activated receptor gamma inhibitors: Ferulic acid and derivatives. Journal of Biomolecular Structure & Dynamics, 39(4), 1295–1311.

    Article  CAS  Google Scholar 

  29. Berman, H., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T., Weissig, H., & Bourne, P. (2000). The protein data bank. Nucleic acids research, 28(1), 235–242.

    Article  CAS  Google Scholar 

  30. Kalaiarasi, J., Balakrishnan, D., Al-Keridis, L. A., Al-mekhlafi, F. A., Farrag, M. A., Kanisha, C. C., & Pragathiswaran, C. (2022). Sensing and antimicrobial activity of polyaniline doped with TiO2 nanocomposite synthesis and characterization. Journal of King Saud University - Science, 34(3), 101824. https://doi.org/10.1016/j.jksus.2022.101824

    Article  Google Scholar 

  31. Xue, W., Fang, K., Qiu, H., Li, J., & Mao, W. (2006). Electrical and magnetic properties of the Fe3O4–polyaniline nanocomposite pellets containing DBSA-doped polyaniline and HCl-doped polyaniline with Fe3O4 nanoparticles. Synthetic Metals, 156(7–8), 506–509. https://doi.org/10.1016/j.synthmet.2005.06.021

    Article  CAS  Google Scholar 

  32. Govindhan, P., & Pragathiswaran, C. (2017). Enhanced photocatalytic activity of TiO2/SiO2–CdS nanocomposite under direct sunlight for degradation of methylene blue. Journal of Materials Science: Materials in Electronics, 28(6), 5063–5069. https://doi.org/10.1007/s10854-016-6164-z

    Article  CAS  Google Scholar 

  33. Khanna, P. K., Singh, N., Charan, S., & Viswanath, A. K. (2005). Synthesis of Ag/polyaniline nanocomposite via an in situ photo-redox mechanism. Materials Chemistry and Physics, 92(1), 214–219. https://doi.org/10.1016/j.matchemphys.2005.01.011

    Article  CAS  Google Scholar 

  34. Stejskal, J., Sapurina, I. Y., & Trchová, M. (2010). Polyaniline nanostructures and the role of aniline oligomers in their formation. Progress in Polymer Science, 35, 1420–1481.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are highly thankful to their respective universities for providing research facilities. M.H.A thanks Taif University research supporting project TURSP2020/91 Taif University Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by D. Balakrishnan, C. Pragathiswaran, Yugal Kishore Mohanta and Muthupandian Saravanan. The first draft of the manuscript was written by D. Balakrishnan, K. Thanikasalam, Magda H. Abdellattif and Muthupandian Saravanan, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to C. Pragathiswaran or Muthupandian Saravanan.

Ethics declarations

Ethics Approval

The present research study does not involve any human participants, their data, or biological material.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Conflict of Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balakrishnan, D., Pragathiswaran, C., Thanikasalam, K. et al. Molecular Docking and In Vitro Inhibitory Effect of Polyaniline (PANI)/ZnO Nanocomposite on the Growth of Struvite Crystal: a Step Towards Control of UTI. Appl Biochem Biotechnol 194, 4462–4476 (2022). https://doi.org/10.1007/s12010-022-03911-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03911-x

Keywords

Navigation