Skip to main content
Log in

Improving the Transglycosylation Activity of α-Glucosidase from Xanthomonas campestris Through Semi-rational Design for the Synthesis of Ethyl Vanillin-α-Glucoside

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The α-glucosidase (EC 3.2.1.20) XgtA produced by Xanthomonas campestris shows high α-glucosyl transfer activity toward alcoholic and phenolic hydroxyl groups. Ethyl vanillin-α-glucoside, a precursor-aroma compound with improved water solubility and thermal stability, can be synthesized through the transglycosylation of ethyl vanillin by XgtA. However, its low ethyl vanillin-α-glucoside yield and ability to hydrolyze ethyl vanillin-α-glucoside limits for industrial applications. Rational design and site-directed mutagenesis were employed to generate three variants of X. campestris α-glucosidase, L145I, S272T, and L145I/S272T, with improved transglycosylation activity toward EV. The highest yield is up to 52.41% by L145I/S272T, which also displayed remarkably lower hydrolysis activity toward the glycoside product EVG compared to XgtA. These results also showed that the mutation in sugar-binding subsite + 1 is more effective than subsite -1 for enhancing the ratio of transglycosylation/hydrolysis for the α-glucosidase XgtA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All data sources could be available to readers on request.

Code Availability

Not applicable.

References

  1. Jung, H. J., Song, Y. S., Kim, K., Lim, C. J., & Park, E. H. (2010). Assessment of the anti-angiogenic, anti-inflammatory and antinociceptive properties of ethyl Vanillin. Archives of Pharmacal Research, 33(2), 309–316.

    Article  CAS  Google Scholar 

  2. Desmet, T., Soetaert, W., Bojarova, P., Kren, V., Dijkhuizen, L., Eastwick-Field, V., & Schiller, A. (2012). Enzymatic glycosylation of small molecules: Challenging substrates require tailored catalysts. Chemistry - A European Journal, 18(35), 10786–10801.

    Article  CAS  Google Scholar 

  3. Desmet, T., & Soetaert, W. (2011). Enzymatic glycosyl transfer: Mechanisms and applications. Biocatalysis and Biotransformation, 29(1), 1–18.

    Article  CAS  Google Scholar 

  4. Kim, S. K., Kim, K. S., Ra, D. Y., & Kim, Y. H. (2003). Enzymatic synthesis of vanillin-α-glucoside and ethyl vanillin-α-glucoside. Journal of the Koresn Society of Tobacco Science, 25(2), 120–127.

    Google Scholar 

  5. Chen, L. Y., Zhou, Y. L., Lu, C. X., Ma, Z., Chen, H. C., Zhu, L. J., Lu, Y. L., & Chen, X. L. (2021). Efficient production of l-menthyl α-glucopyranoside from l-menthol via whole-cell biotransformation using recombinant Escherichia coli. Biotechnology Letters, 43(2), 1757–1764.

    Article  CAS  Google Scholar 

  6. Bungaruang, L., Gutmann, A., & Nidetzky, B. (2013). Leloir glycosyltransferases and natural product glycosylation: Biocatalytic synthesis of the C-glucoside nothofagin, a major antioxidant of redbush herbal tea. Advanced Synthesis & Catalysis, 355(14–15), 2757–2763.

    Article  CAS  Google Scholar 

  7. Okuyama, M., Saburi, W., Mori, H., & Kimura, A. (2016). α-Glucosidases and α-1,4-glucan lyases: Structures, functions, and physiological actions. Cellular and Molecular Life Sciences, 73(14), 2727–2751.

    Article  CAS  Google Scholar 

  8. Koshland, D. E. (1953). Stereochemistry and the mechanism of enzymatic reactions. Biological reviews, 28(4), 416–436.

    Article  CAS  Google Scholar 

  9. Crout, D., & Vic, G. (1998). ChemInform abstract: Glycosidases and glycosyl transferases in glycoside and oligosaccharide synthesis. ChemInform, 2(1), 98–111.

    CAS  Google Scholar 

  10. Chen, H. C., Yang, S. S., Xu, A. J., Jiang, R. N., Tang, Z. C., Wu, J. M., Zhu, L. J., Liu, S. J., Chen, X. L., & Lu, Y. L. (2019) Insight into the glycosylation and hydrolysis kinetics of α-glucosidase in the synthesis of glycosides. Applied Microbiology and Biotechnology, 103(23-24), 9423-9432.

  11. Banerjee, G., & Chattopadhyay, P. (2019). Vanillin biotechnology: The perspectives and future. Journal of the Science of Food and Agriculture, 99(2), 499–506.

    Article  CAS  Google Scholar 

  12. Winter, K., Desmet, T., Devlamynck, T., Renterghem, L., Verhaeghe, T., Pelantova, H., Kren, V., & Soetaert, W. (2014). Biphasic catalysis with disaccharide phosphorylases: Chemoenzymatic synthesis of α-D-Glucosides using sucrose phosphorylase. Organic Process Research & Development, 18(6), 781–787.

    Article  Google Scholar 

  13. Armand, S., Andrews, S. R., Charnock, S. J., & Gilbert, H. J. (2001). Influence of the aglycone region of the substrate binding cleft of Pseudomonas xylanase 10A on catalysis. Biochemistry, 40(25), 7404–7409.

    Article  CAS  Google Scholar 

  14. Taira, T., Fujiwara, M., Dennhart, N., Hayashi, H., Onaga, S., Ohnuma, T., Letzel, T., Sakuda, S., & Fukamizo, T. (2010). Transglycosylation reaction catalyzed by a class V chitinase from cycad, Cycas revoluta: A study involving site-directed mutagenesis, HPLC, and real-time ESI-MS. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1804(4), 668–675.

    Article  CAS  Google Scholar 

  15. Johansson, P., Brumer, H., Baumann, M. J., Kallas, A. M., Henriksson, H., Denman, S. E., Teeri, T. T., & Jones, T. A. (2004). Crystal structures of a poplar xyloglucan endotransglycosylase reveal details of transglycosylation acceptor binding. The Plant Cell, 16(4), 874–886.

    Article  CAS  Google Scholar 

  16. Champion, E., Guerin, F., Moulis, C., Barbe, S., Thu Hoai, T., Morel, S., Descroix, K., Monsan, P., Mourey, L., Mulard, L. A., Tranier, S., Remaud, M., & Andre, I. (2012). Applying pairwise combinations of amino acid mutations for sorting out highly efficient glucosylation tools for chemo-enzymatic synthesis of bacterial oligosaccharides. Journal of the American Chemical Society, 134(45), 18677–18688.

    Article  CAS  Google Scholar 

  17. Hui, Y. F., Drone, J., Hoffmann, L., Tran, V., Tellier, C., Rabiller, C., & Dion, M. (2005). Converting a β-glycosidase into a β-transglycosidase by directed evolution. Journal of Biological Chemistry, 280(44), 37088–37097.

    Article  Google Scholar 

  18. Lu, Y., Yang, H. T., Hu, H. Y., Wang, Y., Rao, Z. H., & Jin, C. (2009). Mutation of Trp137 to glutamate completely removes transglycosyl activity associated with the Aspergillus fumigatus AfChiB1. Glycoconjugate Journal, 26(5), 525–534.

    Article  Google Scholar 

  19. Arab-Jaziri, F., Bissaro, B., Tellier, C., Dion, M., Fauré, R., & O’Donohue, M. J. (2015). Enhancing the chemoenzymatic synthesis of arabinosylated xylo-oligosaccharides by GH51 α-l-arabinofuranosidase. Carbohydrate Research, 401(12), 64–72.

    Article  CAS  Google Scholar 

  20. Teze, D., Hendrickx, J., Czjzek, M., Ropartz, D., Sanejouand, Y. H., Tran, V., Tellier, C., & Dion, M. (2014). Semi-rational approach for converting a GH1-glycosidase into a β-transglycosidase. Protein Engineering Design & Selection Peds, 27(1), 13–19.

    Article  CAS  Google Scholar 

  21. Watanabe, R., Arimura, Y., Ishii, Y., & Kirimura, K. (2020). Crystal structure of α-glucosyl transfer enzyme XgtA from Xanthomonas campestris WU-9701. Biochemical and Biophysical Research Communications, 526(3), 580–585.

    Article  CAS  Google Scholar 

  22. Shen, X., Saburi, W., Gai, Z., Kato, K., & Yao, M. (2015). Structural analysis of the α-glucosidase HaG provides new insights into substrate specificity and catalytic mechanism. Acta Crystallographica Section D, 71(6), 1382–1391.

    Article  CAS  Google Scholar 

  23. Turner, P., Barber, C., & Daniels, M. (1984) Behaviour of the transposons Tn5 and Tn7 in Xanthomonas campestris pv. campestris. Molecular and General Genetics 195(1–2), 101–107.

  24. Bissaro, B., Durand, J., Biarnes, X., Planas, A., Monsan, P., O’Donohue, M. J., & Faure, R. (2015). Molecular design of non-leloir furanose-transferring enzymes from an α-l-arabinofuranosidase: A rationale for the engineering of evolved transglycosylases. Acs Catalysis, 5(8), 4598–4611.

    Article  CAS  Google Scholar 

  25. Champion, E., Guerin, F., Moulis, C., Barbe, S., Tran, T. H., Morel, S., Descroix, K., Monsan, P., Mourey, L., Mulard, L. A., Tranier, S., Remaud, M., & Andre, I. (2012). Applying pairwise combinations of amino acid mutations for sorting out highly efficient glucosylation tools for chemo-enzymatic synthesis of bacterial oligosaccharides. Journal of the American Chemical Society, 134(45), 18677–18688.

    Article  CAS  Google Scholar 

  26. Osanjo, G., Dion, M., Drone, J., Solleux, C., Tran, V., Rabiller, C., & Tellier, C. (2007). Directed evolution of the α-L-fucosidase from Thermotoga maritima into an α-L-transfucosidase. Biochemistry, 46(4), 1022–1033.

    Article  CAS  Google Scholar 

  27. Reetz, M. T., Bocola, M., Carballeira, J. D., Zha, D. X., & Vogel, A. (2005). Expanding the range of substrate acceptance of enzymes: Combinatorial active-site saturation test. Angewandte Chemie-International Edition, 44(27), 4192–4196.

    Article  CAS  Google Scholar 

  28. Lundemo, P., Karlsson, E. N., & Adlercreutz, P. (2017). Eliminating hydrolytic activity without affecting the transglycosylation of a GH1 β-glucosidase. Applied Microbiology and Biotechnology, 101(3), 1121–1131.

    Article  CAS  Google Scholar 

  29. Larsbrink, J., Izumi, A., Hemsworth, G. R., Davies, G. J., & Brumer, H. (2012). Structural enzymology of Cellvibrio japonicus Agd31B protein reveals α-transglucosylase activity in glycoside hydrolase family 31. The Journal of Biological Chemistry, 287(52), 43288–43299.

    Article  CAS  Google Scholar 

Download references

Funding

The financial support provided for this project was from the National Natural Science Foundation of China (Grant No. 21908196).

Author information

Authors and Affiliations

Authors

Contributions

LY Chen: Conceptualization, methodology, validation, formal analysis, investigation and writing original draft.

Y Liu: Investigation.

YY Zhou: Review and editing.

LJ Zhu and XL Chen: Conceptualization, funding acquisition, supervision, writing, review and editing.

Corresponding authors

Correspondence to Linjiang Zhu or Xiaolong Chen.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 15401 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Liu, Y., Zhou, Y. et al. Improving the Transglycosylation Activity of α-Glucosidase from Xanthomonas campestris Through Semi-rational Design for the Synthesis of Ethyl Vanillin-α-Glucoside. Appl Biochem Biotechnol 194, 3082–3096 (2022). https://doi.org/10.1007/s12010-022-03908-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03908-6

Keywords

Navigation