Skip to main content

Advertisement

Log in

Corn Steep Liquor: Green Biological Resources for Bioindustry

  • Review
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Corn steep liquor (CSL) is a by-product of the wet milling process and contains mostly crude proteins, amino acids, minerals, vitamins, reducing sugars, organic acids, enzymes and other nutrients. The concentration of organic matter in the CSL is high and the yield is large. If directly discharged into the integrated wastewater treatment system, the load and cost of wastewater treatment will be greatly increased. On the other hand, most of the organic matter in the CSL is a valuable resource that can be reused and recovered, and has a significant resource potential. How to develop and utilize CSL has become a major problem faced by enterprises and society. In recent years, people have done a lot of research on the comprehensive utilization of CSL. CSL is commonly used as an inexpensive source of nitrogen, carbon or vitamins in the production of glutamate, antibiotics, lactic acid and other biotechnologies. This article reviews the active ingredients of CSL and their analytical methods, as well as its use for microbial culture medium, low-cost animal feed, biosurfactant, and biostimulant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Riccetto, S., Davis, A. S., Guan, K., & Pittelkow, C. M. (2020). Integrated assessment of crop production and resource use efficiency indicators for the U.S. Corn Belt. Global Food Security, 24, 100339. https://doi.org/10.1016/j.gfs.2019.100339

    Article  Google Scholar 

  2. Cornejo-Villegas, M., Rincón-Londoño, N., Real-López, D., & Rodríguez-García, M. E. (2018). The effect of Ca2+ ions on the pasting, morphological, structural, vibrational, and mechanical properties of corn starch-water system. Journal of Cereal Science, 79, 174–182. https://doi.org/10.1016/j.jcs.2017.10.003

    Article  CAS  Google Scholar 

  3. Martínez-Arcos, A., Moldes, A. B., & Vecino, X. (2021). Adding value to secondary streams of corn wet milling industry. CyTA-Journal of Food, 19(1), 675–681. https://doi.org/10.1080/19476337.2021.1965661

    Article  CAS  Google Scholar 

  4. Chovatiya, S. G., Bhatt, S. S., & Shah, A. R. (2011). Evaluation of corn steep liquor as a supplementary feed for Labeo rohita (Ham.) fingerlings. Aquaculture International, 19(1), 1–12. https://doi.org/10.1007/s10499-010-9336-5

    Article  CAS  Google Scholar 

  5. Xiao, X., Hou, Y. Y., Du, J., Liu, Y., Liu, Y. J., Dong, L. Y. … Luo, G. A. (2012). Determination of main categories of components in corn steep liquor by near-infrared spectroscopy and partial least-squares regression. Journal of Agricultural and Food Chemistry, 60(32), 7830–7835. https://doi.org/10.1021/jf3012823

    Article  CAS  PubMed  Google Scholar 

  6. Chinta, Y. D., Kano, K., Widiastuti, A., Fukahori, M., Kawasaki, S., Eguchi, Y. … Sato, T. (2014). Effect of corn steep liquor on lettuce root rot (Fusarium oxysporum f.sp. lactucae) in hydroponic cultures. Journal of the Science of Food and Agriculture, 94(11), 2317–2323. https://doi.org/10.1002/jsfa.6561

    Article  CAS  PubMed  Google Scholar 

  7. Zarei, S., Khodaiyan, F., Hosseini, S. S., & Kennedy, J. F. (2020). Pullulan production using molasses and corn steep liquor as agroindustrial wastes: Physiochemical, thermal and rheological properties. Applied Food Biotechnology, 7(4), 263–272. https://doi.org/10.22037/afb.v7i4.29747

    Article  CAS  Google Scholar 

  8. Wang, G. N., Shi, B. Y., Zhang, P., Zhao, T. B., Yin, H. S., & Qiao, C. S. (2020). Effects of corn steep liquor on β-poly(l-malic acid) production in Aureobasidium melanogenum. AMB Express, 10(1), 211. https://doi.org/10.1186/s13568-020-01147-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lawford, H. G., & Rousseau, J. D. (1997). Corn steep liquor as a cost-effective nutrition adjunct in high-performance Zymomonas ethanol fermentation. Applied Biochemistry and Biotechnology, 63–65(1), 287–304. https://doi.org/10.1007/BF02920431

    Article  PubMed  Google Scholar 

  10. Nisa, M., Sarwar, M., & Khan, M. A. (2004). Influence of ad libitum feeding of urea treated wheat straw with or without corn steep liquor on intake, in situ digestion kinetics, nitrogen metabolism, and nutrient digestion in Nili-Ravi buffalo bulls. Australian Journal of Agricultural Research, 55(2), 229–233. https://doi.org/10.1071/AR02236

    Article  Google Scholar 

  11. Obayori, O. S., Ilori, M. O., Adebusoye, S. A., Oyetibo, G. O., Omotayo, A. E., & Amund, O. O. (2010). Effects of corn steep liquor on growth rate and pyrene degradation by Pseudomonas strains. Current Microbiology, 60(6), 407–411. https://doi.org/10.1007/s00284-009-9557-x

    Article  CAS  PubMed  Google Scholar 

  12. Maddipati, P., Atiyeh, H. K., Bellmer, D. N., & Huhnke, R. L. (2011). Ethanol production from Syngas by Clostridium strain P11 using corn steep liquor as a nutrient replacement to yeast extract. Bioresource Technology, 102(11), 6494–6501. https://doi.org/10.1016/j.biortech.2011.03.047

    Article  CAS  PubMed  Google Scholar 

  13. Hofer, A., Hauer, S., Kroll, P., Fricke, J., & Herwig, C. (2018). In-depth characterization of the raw material corn steep liquor and its bioavailability in bioprocesses of Penicillium chrysogenum. Process Biochemistryistry, 70, 20–28. https://doi.org/10.1016/j.procbio.2018.04.008

    Article  CAS  Google Scholar 

  14. Li, X. X., Xu, W. B., Yang, J. S., Zhao, H. B., Pan, C. F., Ding, X., & Zhang, Y. G. (2016). Effects of applying lactic acid bacteria to the fermentation on a mixture of corn steep liquor and air-dried rice straw. Animal Nutrition, 2(3), 229–233. https://doi.org/10.1016/j.aninu.2016.04.003

    Article  PubMed  PubMed Central  Google Scholar 

  15. Edwinoliver, N. G., Thirunavukarasu, K., Purushothaman, S., Rose, C., Gowthaman, M. K., & Kamini, N. R. (2009). Corn steep liquor as a nutrition adjunct for the production of Aspergillus niger lipase and hydrolysis of oils thereof. Journal of Agricultural and Food Chemistry, 57(22), 10658–10663. https://doi.org/10.1021/jf902726p

    Article  CAS  PubMed  Google Scholar 

  16. Kona, R. P., Qureshi, N., & Pai, J. S. (2001). Production of glucose oxidase using Aspergillus niger and corn steep liquor. Bioresource Technologyogy, 78(2), 123–126. https://doi.org/10.1016/S0960-8524(01)00014-1

    Article  CAS  Google Scholar 

  17. Sekoai, P. T., Ayeni, A. O., & Daramola, M. O. (2018). Parametric optimization of citric acid production from apple pomace and corn steep liquor by a wild type strain of Aspergillus niger: A response surface methodology approach. International Journal of Engineering Research in Africa, 36, 98–113. https://doi.org/10.4028/www.scientific.net/JERA.36.98

    Article  Google Scholar 

  18. Knight, S. G., & Frazier, W. C. (1945). The effect of corn steep liquor ash on penicillin production. Science, 102(2659), 617–618. https://doi.org/10.1126/science.102.2659.617

    Article  PubMed  Google Scholar 

  19. Nisa, M., Sarwar, M., & Khan, M. A. (2004). Nutritive value of urea treated wheat straw ensiled with or without corn steep liquor for lactating Nili-Ravi buffaloes. Asian-Australasian Journal of Animal Sciences, 17(6), 825–829. https://doi.org/10.5713/ajas.2004.825

    Article  Google Scholar 

  20. Vecino, X., Barbosa-Pereira, L., Devesa-Rey, R., Cruz, J. M., & Moldes, A. B. (2014). Study of the surfactant properties of aqueous stream from the corn milling industry. Journal of Agricultural and Food Chemistry, 62(24), 5451–5457. https://doi.org/10.1021/jf501386h

    Article  CAS  PubMed  Google Scholar 

  21. Vecino, X., Rodríguez-López, L., Cruz, J. M., & Moldes, A. B. (2015). Sewage sludge polycyclic aromatic hydrocarbon (PAH) decontamination technique based on the utilization of a lipopeptide biosurfactant extracted from corn steep liquor. Journal of Agricultural and Food Chemistry, 63(32), 7143–7150. https://doi.org/10.1021/acs.jafc.5b02346

    Article  CAS  PubMed  Google Scholar 

  22. López-Prieto, A., Martínez-Padrón, H., Rodríguez-López, L., Moldes, A. B., & Cruz, J. M. (2019). Isolation and characterization of a microorganism that produces biosurfactants in corn steep water. CyTA-Journal of Food, 17(1), 509–516. https://doi.org/10.1080/19476337.2019.1607909

    Article  CAS  Google Scholar 

  23. Niwa, T., Doi, U., Kato, Y., & Osawa, T. (2001). Antioxidative properties of phenolic antioxidants isolated from corn steep liquor. Journal of the Science of Food and Agriculture, 49(1), 177–182. https://doi.org/10.1021/jf0007885

    Article  CAS  Google Scholar 

  24. Zhang, J., Zhou, J. W., Liu, J., Chen, K. J., Liu, L. M., & Chen, J. A. (2011). Development of chemically defined media supporting high cell density growth of Ketogulonicigenium vulgare and Bacillus megaterium. Bioresource Technology, 102(7), 4807–4814. https://doi.org/10.1016/j.biortech.2010.10.124

    Article  CAS  PubMed  Google Scholar 

  25. Xiao, X., Hou, Y. Y., Liu, Y., Liu, Y. J., Zhao, H. Z., Dong, L. Y. … Luo, G. A. (2013). Classification and analysis of corn steep liquor by UPLC/Q-TOF MS and HPLC. Talanta, 107, 344–348. https://doi.org/10.1016/j.talanta.2013.01.044

    Article  CAS  PubMed  Google Scholar 

  26. Hofer, A., & Herwiga, C. (2017). Quantitative determination of nine water-soluble vitamins in the complex matrix of corn steep liquor for rawmaterial quality assessment. Journal of Chemical Technology and Biotechnology, 92(8), 2106–2113. https://doi.org/10.1002/jctb.5211

    Article  CAS  Google Scholar 

  27. Rodríguez-López, L., Rincón-Fontán, M., & Vecino, X. (2020). Extraction, separation and characterization of lipopeptides and phospholipids from corn steep water. Separation and Purification Technology, 248, 11706. https://doi.org/10.1016/j.seppur.2020.117076

    Article  CAS  Google Scholar 

  28. Rivas, B., Moldes, A. B., Dominguez, J. M., & Parajo, J. C. (2004). Lactic acid production from corn cobs by simultaneous saccharification and fermentation: A mathematical interpretation. Enzyme and Microbial Technology, 34(7), 627–634. https://doi.org/10.1016/j.enzmictec.2004.01.011

    Article  CAS  Google Scholar 

  29. Pitol, L. O., Finkler, A. T. J., Dias, G. S., Machado, A. S., Zanin, G. M., Mitchell, D. A., & Krieger, N. (2017). Optimization studies to develop a low-cost medium for production of the lipases of Rhizopus microsporus by solid-state fermentation and scale-up of the process to a pilot packed-bed bioreactor. Process Biochemistry, 62, 37–47. https://doi.org/10.1016/j.procbio.2017.07.019

    Article  CAS  Google Scholar 

  30. Hull, S. R., Yang, B. Y., Venzke, D., Kulhavy, K., & Montgomery, R. (1996). Composition of corn steep water during steeping. Journal of Agricultural and Food Chemistry, 44(7), 1857–1863. https://doi.org/10.1021/jf950353v

    Article  CAS  Google Scholar 

  31. Nascimento, R. P., Junior, N. A., Pereira, N. J., Bon, E. P. S., & Coelho, R. R. R. (2009). Brewer’s spent grain and corn steep liquor as substrates for cellulolytic enzymes production by Streptomyces malaysiensis. Letters in Applied Microbiology, 48(5), 529–535. https://doi.org/10.1111/j.1472-765X.2009.02575.x

    Article  CAS  PubMed  Google Scholar 

  32. Chang, K. K., Sun-Wook, J., Jung, E. Y., & Yong, J. C. (2020). High-yield production of lycopene from corn steep liquor and glycerol using the metabolically engineered Deinococcus radiodurans R1 strain. Journal of Agricultural and Food Chemistry, 68(18), 5147–5153. https://doi.org/10.1021/acs.jafc.0c01024

    Article  CAS  Google Scholar 

  33. Andriani, D., Yuthi, A. A., & Karina, M. (2020). The optimization of bacterial cellulose production and its applications: A review. Cellulose, 27(12), 6747–6766. https://doi.org/10.1007/s10570-020-03273-9

    Article  CAS  Google Scholar 

  34. Rani, M. U., & Appaiah, A. (2011). Optimization of culture conditions for bacterial cellulose production from Gluconacetobacter hansenii UAC09. Annals of Microbiology, 61(4), 781–787. https://doi.org/10.1007/s13213-011-0196-7

    Article  CAS  Google Scholar 

  35. Jung, H., Lee, O. M., Jeong, J. H., Jeon, Y. D., Park, K. H., Kim, H. S. … Son, H. J. (2010). Production and characterization of cellulose by Acetobacter sp. V6 using a cost-effective molasses-corn steep liquor medium. Applied Biochemistry and Biotechnology, 162(2), 486–497. https://doi.org/10.1007/s12010-009-8759-9

    Article  CAS  PubMed  Google Scholar 

  36. Rani, M. U., & Appaiah, K. A. A. (2013). Production of bacterial cellulose by Gluconacetobacter hansenii UAC09 using coffee cherry husk. Journal of Food Science and Technology, 50(4), 755–762. https://doi.org/10.1007/s13197-011-0401-5

    Article  CAS  PubMed  Google Scholar 

  37. Costa, A. F. S., Almeida, F. C. G., Vinhas, G. M., & Sarubbo, L. A. (2017). Production of bacterial cellulose by Gluconacetobacter hansenii using corn steep liquor as nutrient sources. Frontiers in Microbiology, 8, 2027. https://doi.org/10.3389/fmicb.2017.02027

  38. Zvonareva, E. S., Osmolovskiy, A. A., Kreier, V. G., Baranova, N. A., Kotova, I. B., & Egorov, N. S. (2018). Production of proteinase with plasmin-like and prekallikrein activating activity by the micromycete Aspergillus terreus. Applied Biochemistry and Microbiology, 54(2), 206–210. https://doi.org/10.1134/S0003683818020151

    Article  CAS  Google Scholar 

  39. Serrano, S. M. T. (2019). Integrated studies to understand snake venom proteinase effects upon cells and tissues. Toxicon, 168(1), S2. https://doi.org/10.1016/j.toxicon.2019.06.030

    Article  Google Scholar 

  40. Corrêa, T. L. R., Moutinho, S. K. D. S., Martins, M. L. L., & Martins, M. A. (2011). Simultaneous α-amylase and protease production by the soil bacterium Bacillus sp. SMIA-2 under submerged culture using whey protein concentrate and corn steep liquor: Compatibility of enzymes with commercial detergents. Food Science and Technology, 31(4), 843–848. https://doi.org/10.1590/S0101-20612011000400003

    Article  Google Scholar 

  41. Liu, X., Kopparapu, N. K., Yao, L., Deng, Y., & Zheng, X. (2017). Biochemical characterization of a novel fibrinolytic enzyme from Cordyceps militaris. International Journal of Biological Macromolecules, 94(B), 793–801. https://doi.org/10.1016/j.ijbiomac.2016.09.048

    Article  CAS  PubMed  Google Scholar 

  42. Vachher, M., Sen, A., Kapila, R., & Nigam, A. (2021). Microbial therapeutic enzymes: A promising area of biopharmaceuticals. Current Research in Biotechnology, 3, 195–208. https://doi.org/10.1016/j.crbiot.2021.05.006

    Article  Google Scholar 

  43. Wu, R., Chen, G. G., Pan, S. H., Zeng, J. J., & Liang, Z. Q. (2019). Cost-effective fibrinolytic enzyme production by Bacillus subtilis WR350 using medium supplemented with corn steep powder and sucrose. Scientific Reports, 9(1), 6824. https://doi.org/10.1038/s41598-019-43371-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Barros, P. D. S., Silva, P. E. C., Nascimento, T. P., Costa, R. M. P. B., Bezerra, R. P., & Porto, A. L. F. (2020). Fibrinolytic enzyme from Arthrospira platensis cultivated in medium culture supplemented with corn steep liquor. International Journal of Biological Macromolecules, 164, 3446–3453. https://doi.org/10.1016/j.ijbiomac.2020.08.217

    Article  CAS  PubMed  Google Scholar 

  45. Franco-Cirigliano, M. N., Rezende, R. C., Gravina-Oliveira, M. P., Pereira, P. H. F., Nascimento, R. P., Bon, E. P. S. … Coelho, R. R. R. (2013). Streptomyces misionensis PESB-25 produces a thermoacidophilic endoglucanase using sugarcane bagasse and corn steep liquor as the sole organic substrates. BioMed Research International, 2013, 584207. https://doi.org/10.1155/2013/584207

  46. Wang, F., Hu, J. H., Guo, C., & Liu, C. Z. (2014). Enhanced laccase production by Trametes versicolor using corn steep liquor as both nitrogen source and inducer. Bioresource Technology, 166, 602–605. https://doi.org/10.1016/j.biortech.2014.05.068

    Article  CAS  PubMed  Google Scholar 

  47. Maldonado, R. R., Aguiar-Oliveira, E., Pozza, E. L., Costa, F. A. A., Filho, F. M., & Rodrigues, M. I. (2014). Production of lipase from Geotrichum candidum using corn steep liquor in different bioreactors. Journal of the American Oil Chemists’ Society, 91(12), 1999–2009. https://doi.org/10.1007/s11746-014-2552-9

    Article  CAS  Google Scholar 

  48. Ramos, P. R., Kamimura, E. S., Pires, N. A. M., Maldonado, R. R., & Oliveira, A. L. (2021). Esterification reaction in SC-CO2 catalyzed by lipase produced with corn steep liquor and Minas Frescal cheese whey. Bioresource Technology Reports, 14, 100670. https://doi.org/10.1016/j.biteb.2021.100670

    Article  CAS  Google Scholar 

  49. Sathler, L. A., Contiero, J., & Cazetta, M. L. (2015). Yacon flour and corn steep liquor as substrates for inulinase and biomass production by Kluyveromyces marxianus NRRL Y-7571. Journal of Advances in Biotechnology, 4(3), 414–423. https://doi.org/10.24297/jbt.v4i3.4892

    Article  Google Scholar 

  50. Maleki-Kakelar, M., Azarhoosh, M. J., Senji, S. G., & Aghaeinejad-Meybodi, A. (2021). Urease production using corn steep liquor as a low-cost nutrient source by Sporosarcina pasteurii: Biocementation and process optimization via artificial intelligence approaches. Environmental Science and Pollution Research International. https://doi.org/10.1007/s11356-021-16568-6

    Article  PubMed  Google Scholar 

  51. da Silva, S. H. F., Gordobil, O., & Labidi, J. (2020). Organic acids as a greener alternative for the precipitation of hardwoodkraft lignins from the industrial black liquor. International Journal of Biological Macromolecules, 142, 583–591. https://doi.org/10.1016/j.ijbiomac.2019.09.133

    Article  CAS  PubMed  Google Scholar 

  52. Xi, Y. L., Chen, K. Q., Dai, W. Y., Ma, J. F., Zhang, M., Jiang, M. … Ouyang, P. K. (2013). Succinic acid production by Actinobacillus succinogenes NJ113 using corn steep liquor powder as nitrogen source. Bioresource Technology, 136(1), 775–779. https://doi.org/10.1016/j.biortech.2013.03.107

    Article  CAS  PubMed  Google Scholar 

  53. Krishnakumar, J., Drapcho, C. M., & Nghiem, N. P. (2014). Biological production of succinic acid using cull peach medium: Effects of corn steep liquor supplement and hydrogen sparging. Biological Engineering, 6(4), 189–202. https://doi.org/10.13031/bet6.10394

    Article  Google Scholar 

  54. Shen, N. K., Liao, S. M., Wang, Q. Y., Qin, Y., Zhu, Q. X., Zhu, J. … Huang, R. B. (2016). Economical succinic acid production from sugarcane juice by Actinobacillus succinogenes supplemented with corn steep liquor and peanut meal as nitrogen sources. Sugar Tech, 18(3), 292–298. https://doi.org/10.1007/s12355-015-0401-2

    Article  CAS  Google Scholar 

  55. Tan, J. P., Jahim, J. M., Wu, T. Y., Harun, S., & Mumtaz, T. (2016). Use of corn steep liquor as an economical nitrogen source for biosuccinic acid production by Actinobacillus succinogenes. IOP Conference Series: Earth and Environmental Science, 36(1), 012058. https://doi.org/10.1088/1755-1315/36/1/012058

  56. Zhou,Y. P.,Lin,M.,Wei,P. L.,& Yang,S. T.(2017).Polymalic acid fermentation by Aureobasidium pullulans for malic acidproduction from soybean hull and soy molasses: Fermentation kineticsand economic analysis. Bioresource Technology, 223,166–174. https://doi.org/10.1016/j.biortech.2016.10.042

  57. Wang, G. N., Shi, B. Y., Zhang, P., Zhao, T. B., Yin, H. S. & Qiao, C. S. (2020). Effects of corn steep liquor on β–poly(l–malicacid) production in Aureobasidiummelanogenum. AMB Express, 10, 211. https://doi.org/10.1186/s13568-020-01147-8

  58. Thakur, A., Panesar, P. S., & Saini, M. S. (2019). L(+)-lactic acid production by immobilized Lactobacillus caseiusing low cost agro-industrial waste as carbon and nitrogen sources. Waste and Biomass Valorization, 10, 1119–1129. https://doi.org/10.1007/s12649-017-0129-1

    Article  CAS  Google Scholar 

  59. Beitel, S. M., Coelho, L. F., & Contiero, J. (2020). Efficient conversion of agroindustrial waste into D(-) lactic acid by Lactobacillus delbrueckiiusing fed-batch fermentation. BioMed Research International, 2020, 4194052. https://doi.org/10.1155/2020/4194052

  60. Liu, X. Y., Wang, X. F., Xu, J. X., Xia, J., Lv, J. S., Zhang, T. … He, J. L. (2015). Citric acid production by Yarrowia lipolyticaSWJ-1b using corn steepliquor as a source of organic nitrogen and vitamins. Industrial Crops and Products, 78, 154–160. https://doi.org/10.1016/j.indcrop.2015.10.029

    Article  CAS  Google Scholar 

  61. Cavalloa, E., Nobilec, M., Cerruttia, P., & Foresti, M. L. (2020). Exploring the production of citric acid with Yarrowia lipolytica using corn wet milling products as alternative low-cost fermentation media. Biochemical Engineering Journal, 155, 107463. https://doi.org/10.1016/j.bej.2019.107463

    Article  CAS  Google Scholar 

  62. Hahn, R., & Cecot, C. (2009). The benefits and costs of ethanol: An evaluation of the government’s analysis. Journal of Regulatory Economics, 35(3), 275–295. https://doi.org/10.1007/s11149-008-9080-1

    Article  Google Scholar 

  63. Silva, A. C., Guimarães, P. M. R., Teixeira, J. A., & Domingues, L. (2010). Fermentation of deproteinized cheese whey powder solutions to ethanol by engineered Saccharomyces cerevisiae: Effect of supplementation with corn steep liquor and repeated-batch operation with biomass recycling by flocculation. Journal of Industrial Microbiology and Biotechnology, 37(9), 973–982. https://doi.org/10.1007/s10295-010-0748-z

    Article  CAS  PubMed  Google Scholar 

  64. Taiwo, A. E., Madzimbamuto, T. N., & Ojumu, T. V. (2018). Optimization of corn steep liquor dosage and other fermentation parameters for ethanol production by Saccharomyces cerevisiae type 1 and anchor instant yeast. Energies, 11(7), 1740. https://doi.org/10.3390/en11071740

    Article  CAS  Google Scholar 

  65. Durre, P. (2011). Fermentative production of butanol-The academic perspective. Current Opinion in Biotechnology, 22(3), 331–336. https://doi.org/10.1016/j.copbio.2011.04.010

    Article  CAS  PubMed  Google Scholar 

  66. Lee, S. Y., Park, J. H., Jang, S. H., Nielsen, L. K., Kim, J., & Jung, K. S. (2008). Fermentative butanol production by clostridia. Biotechnology and Bioengineering, 101(2), 209–228. https://doi.org/10.1002/bit.22003

    Article  CAS  PubMed  Google Scholar 

  67. Choi, J., Jang, Y. S., Cho, J. H., Seung, D., Lee, S. Y., Papoutsakis, E. T. … Song, H. (2013). Characterization and evaluation of corn steep liquid in acetone-butanol-ethanol production by Clostridium acetobutylicum. Biotechnology and Bioprocess Engineering, 18(2), 266–271. https://doi.org/10.1007/s12257-012-0619-8

    Article  CAS  Google Scholar 

  68. Yang, T. W., Rao, Z. M., Zhang, X., Xu, M. J., Xu, Z. H., & Yang, S. T. (2013). Effects of corn steep liquor on production of 2,3-butanediol andacetoin by Bacillus subtilis. Process Biochemistry, 48(11), 1610–1617. https://doi.org/10.1016/j.procbio.2013.07.027

    Article  CAS  Google Scholar 

  69. Wischral, D., Zhang, J. Z., Cheng, C., Meng, L., De Monteiro Galotti, L., Pessoa, F. L. P. … Yang, S. T. (2016). Production of 1,3-propanediol by Clostridium beijerinckii DSM 791 from crude glycerol and corn steep liquor: Process optimization and metabolic engineering. Bioresource Technology, 212, 100–110. https://doi.org/10.1016/j.biortech.2016.04.020

    Article  CAS  PubMed  Google Scholar 

  70. Liu, Z. F., Li, Z. G., Zhong, H., Zeng, G. M., Liang, Y. S., Chen, M. … Shao, B. B. (2017). Recent advances in the environmental applications of biosurfactant saponins: A review (Review). Journal of Environmental Chemical Engineering, 5(6), 6030–6038. https://doi.org/10.1016/j.jece.2017.11.021

    Article  CAS  Google Scholar 

  71. Rodríguez-López, L., Rincón-Fontán, M., Vecino, X., Moldes, A. B., & Cruz, J. M. (2020). Biodegradability study of the biosurfactant contained in a crude extract from corn steep water. Journal of Surfactants & Detergents, 23(1), 79–90. https://doi.org/10.1002/jsde.12338

    Article  CAS  Google Scholar 

  72. Johnson, P., Trybala, A., Starov, V., & Pinfield, V. J. (2021). Effect of synthetic surfactants on the environment and the potential for substitution by biosurfactants. Advances in Colloid and Interface Science, 288, 102340. https://doi.org/10.1016/j.cis.2020.102340

    Article  CAS  PubMed  Google Scholar 

  73. Almeida, F. C. G., Silva, T. A. L., Garrard, I., Sarubbo, L. A., Campos-Takaki, G. M., & Tambourgi, E. B. (2015). Optimization and evaluation of biosurfactant produced by Pantoea sp. using pineapple peel residue, vegetable fat and corn steep liquor. Journal of Chemistry and Chemical Engineering, 9, 269–279. https://doi.org/10.17265/1934-7375/2015.04.005

    Article  Google Scholar 

  74. Gudiña, E. J., Fernandes, E. C., Rodrigues, A. I., Teixeira, J., & Rodrigues, L. R. (2015). Biosurfactant production by Bacillus subtilis using corn steep liquor as culture medium. Frontiers in Microbiology, 6, 59. https://doi.org/10.3389/fmicb.2015.00059

    Article  PubMed  PubMed Central  Google Scholar 

  75. López-Prieto, A., Rodríguez-López, L., Rincón-Fontán, M., Moldes, A. B., & Cruz, J. M. (2019). Effect of biosurfactant extract obtained from the corn-milling industry on probiotic bacteria in drinkable yogurt. Journal of the Science of Food and Agriculture, 99(2), 824–830. https://doi.org/10.1002/jsfa.9251

    Article  CAS  PubMed  Google Scholar 

  76. López-Prieto, A., Rodríguez-López, L., Rincón-Fontán, M., Cruz, J. M., & Moldes, A. B. (2021). Characterization of extracellular and cell bound biosurfactants produced by Aneurinibacillus aneurinilyticus isolated from commercial corn steep liquor. Microbiological Research, 242, 126614. https://doi.org/10.1016/j.micres.2020.126614

    Article  CAS  PubMed  Google Scholar 

  77. Saha, B. C., & Racine, F. M. (2010). Effects of pH and corn steep liquor variability on mannitol production by Lactobacillus intermedius NRRL B-3693. Applied Microbiology and Biotechnology, 7, 553–560. https://doi.org/10.1007/s00253-010-2552-0

    Article  CAS  Google Scholar 

  78. Lu, J. M., Peng, C., Ji, X. J., You, J. Y., Cong, L. L., Ouyang, P. K., & Huang, H. (2011). Fermentation characteristics of Mortierella alpine inresponse to different nitrogen source. Applied Biochemistry and Biotechnology, 164, 979–990. https://doi.org/10.1007/s12010-011-9189-z

    Article  CAS  PubMed  Google Scholar 

  79. Joshi, S., Goyal, S., & Reddy, M. S. (2018). Corn steep liquor as a nutritional source for biocementation and its impact on concrete structural properties. Journal of Industrial Microbiology and Biotechnology, 45(8), 657–667. https://doi.org/10.1007/s10295-018-2050-4

    Article  CAS  PubMed  Google Scholar 

  80. Yu, L., Lei, T., Ren, X. D., Pei, X. L., & Feng, Y. (2008). Response surface optimization of l-(+)-lactic acid production using corn steep liquor as an alternative nitrogen source by Lactobacillus rhamnosus CGMCC 1466. Biochemical Engineering Journal, 39(3), 496–502. https://doi.org/10.1016/j.bej.2007.11.008

    Article  CAS  Google Scholar 

  81. Li, X. X., Xu, W. B., Yang, J. S., Zhao, H. B., Xin, H. S., & Zhang, Y. G. (2016). Effect of different levels of corn steep liquor addition on fermentation characteristics and aerobic stability of fresh rice straw silage. Animal Nutrition, 2(4), 345–350. https://doi.org/10.1016/j.aninu.2016.09.003

    Article  PubMed  PubMed Central  Google Scholar 

  82. Khanuma, S., ur-Nisab, M., Mushtaqa, M., Sarwarb, M., & ul-Hassana, M. (2010). Influence of replacement of concentrate with enzose (corn dextrose) and corn steep liquor on nutrient intake in Nili Ravi buffalo bulls. Italian Journal of Animal Science, 6(2), 567–570. https://doi.org/10.4081/ijas.2007.s2.567

    Article  Google Scholar 

  83. Azizi-Shotorkhoft, A., Sharifi, A., Mirmohammadi, D., Baluch-Gharaei, H., & Rezaei, J. (2016). Effects of feeding different levels of corn steep liquor on the performance of fattening lambs. Journal of Animal Physiology and Animal Nutrition, 100(1), 109–117. https://doi.org/10.1111/jpn.12342

    Article  CAS  PubMed  Google Scholar 

  84. Eckerle, G. J., Pacheco, L. A., Olson, K. C., & Jaeger, J. R. (2012). Effects of corn steep liquor supplementation on voluntary selection of tallgrass prairie hay contaminated with sericea lespedeza and uncontaminated tallgrass prairie hay. Kansas Agricultural Experiment Station Research Reports, (1), 58–61. https://doi.org/10.4148/2378-5977.1420

  85. Preedy, G. W., Olson, K. C., Murray, L. W., & Fick, W. H. (2014). Botanical composition of beef cow diets shifts when native range infested with sericea lespedeza (Lespedeza cuneata) is supplemented with corn steep liquor. Kansas Agricultural Experiment Station Research Reports, (1), 57–62. https://doi.org/10.4148/2378-5977.1463

  86. Ullah, Z., Yousaf, M., Shami, M. M., Sharif, M., & Mahrose, K. (2018). Effect of graded levels of dietary corn steep liquor on growth performance, nutrient digestibility, haematology and histopathology of broilers. Journal of Animal Physiology & Animal Nutrition, 102(1), e395–e402. https://doi.org/10.1111/jpn.12758

    Article  CAS  Google Scholar 

  87. Huynh, A., Li, T., Kovalenko, M., Robinson, R., Fridman, A., Rabinovich, A., & Fridman, G. (2016). Nonequilibrium plasma decontaminationof corn steep liquor for ethanol production:SO2 removal and disinfection. Plasma Medicine, 6(3–4), 219–234. https://doi.org/10.1615/PlasmaMed.2016018656

    Article  Google Scholar 

  88. Vieira, I. M. M., Santos, B. L. P., Ruzene, D. S., & Silva, D. P. (2020). An overview of current research and developments in biosurfactants. Journal of Industrial and Engineering Chemistry, 100, 1–18. https://doi.org/10.1016/j.jiec.2021.05.017

    Article  CAS  Google Scholar 

  89. Vecino, X., Barbosa-Pereira, L., Devesa-Rey, R., Cruz, J. M., & Moldes, A. B. (2015a). Optimization of extraction conditions and fatty acid characterization of Lactobacillus pentosus cell-bound biosurfactant/bioemulsifier. Journal of the Science of Food & Agriculture, 95(2), 313–320. https://doi.org/10.1002/jsfa.6720

    Article  CAS  Google Scholar 

  90. Vecino, X., Barbosa-Pereira, L., Devesa-Rey, R., Cruz, J. M., & Moldes, A. B. (2015). Optimization of liquid–liquid extraction of biosurfactants from corn steep liquor. Bioprocess & Biosystems Engineering, 38(9), 1629–1637. https://doi.org/10.1007/s00449-015-1404-9

    Article  CAS  Google Scholar 

  91. Rodríguez-López, L., Vecino, X., Barbosa-Pereira, L., Moldes, A. B., & Cruz, J. M. (2016). A multifunctional extract from corn steep liquor: Antioxidant and surfactant activities. Food & Function, 7(9), 3724–3732. https://doi.org/10.1039/c6fo00979d

    Article  Google Scholar 

  92. De Rienzo, M. A. D., Stevenson, P., Marchant, R., & Banat, I. M. (2016). Antibacterial properties of biosurfactants against selected gram-positive and -negative bacteria. FEMS Microbiology Letters, 363(2), fnv224. https://doi.org/10.1093/femsle/fnv224

    Article  CAS  Google Scholar 

  93. Elshikh, M., Moya-Ramírez, I., Moens, H., Roelants, S., Soetaert, W., Marchant, R., & Banat, I. M. (2017). Rhamnolipids and lactonic sophorolipids: natural antimicrobial surfactants for oral hygiene. Journal of Applied Microbiology, 123(5), 1111–1123. https://doi.org/10.1111/jam.13550

    Article  CAS  PubMed  Google Scholar 

  94. Vecino, X., Rodríguez-López, L., Ferreira, D., Cruz, J. M., Moldes, A. B., & Rodrigues, L. R. (2018). Bioactivity of glycolipopeptide cell-bound biosurfactants against skin pathogens. International Journal of Biological Macromolecules, 109, 971–979. https://doi.org/10.1016/j.ijbiomac.2017.11.088

    Article  CAS  PubMed  Google Scholar 

  95. López-Prieto, A., Vecino, X., Rodríguez-López, L., Moldes, A. B., & Cruz, J. M. (2020). Fungistatic and fungicidal capacity of a biosurfactant extract obtained from corn steep water. Foods, 9(5), 662. https://doi.org/10.3390/foods9050662

    Article  CAS  PubMed Central  Google Scholar 

  96. Martínez-Arcos, A., López-Prieto, A., Rodríguez-López, L., Pérez-Cid, B., Vecino, X., Moldes, A. B., & Cruz, J. M. (2021). Evaluation of morphological changes in grapes coated with a biosurfactant extract obtained from corn steep liquor. Applied Sciences, 11(13), 5904. https://doi.org/10.3390/app11135904

    Article  CAS  Google Scholar 

  97. Shin, H. D., McClendon, S., Le, T., Taylor, F., & Chen, R. R. (2006). Acomplete enzymatic recovery of ferulic acid from corn residues with extracellular enzymes from Neosartorya spinosa NRRL 185. Biotechnology and Bioengineering, 95(6), 1108–1115. https://doi.org/10.1002/bit.21056

    Article  CAS  PubMed  Google Scholar 

  98. Amiri, A., & Bundur, Z. B. (2018). Use of corn-steep liquor as an alternative carbon source for biomineralization in cement-based materials and its impact on performance. Construction and Building Materials, 165, 655–662. https://doi.org/10.1016/j.conbuildmat.2018.01.070

    Article  CAS  Google Scholar 

  99. Obayori, O. S., Salam, L. B., Anifowoshe, W. T., Odunewu, Z. M., Amosu, O. E., & Ofulue, B. E. (2015). Enhanced degradation of petroleum hydrocarbons in corn-steep-liquor-treated soil microcosm. Soil and Sediment Contamination, 24(7), 731–743. https://doi.org/10.1080/15320383.2015.1020409

    Article  CAS  Google Scholar 

  100. Zhu, M. M., Liu, E. Q., Bao, Y., Duan, S. L., She, J., Liu, H. … Guo, X. T. (2019). Low concentration of corn steep liquor promotes seed germination, plant growth, biomass production and flowering in soybean. Plant Growth Regulation, 87(1), 29–37. https://doi.org/10.1007/s10725-018-0449-6

    Article  CAS  Google Scholar 

  101. Salam, L. B., & Ishaq, A. (2019). Biostimulation potentials of corn steep liquor in enhanced hydrocarbon degradation in chronically polluted soil. 3 Biotech, 9(2), 46. https://doi.org/10.1007/s13205-019-1580-4

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The project was supported by the Foundation (No. ESIBBC202009) of Qilu University of Technology of Cultivating Subject for Biology and Biochemistry.

Author information

Authors and Affiliations

Authors

Contributions

KMZ and JY contributed equally to the curation and writing of manuscript; QAL designed the study, supervised and revised the manuscript; YHM and LC performed reviewing and editing; LZ and WLG contributed to the revision of the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Qing-ai Liu.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable. The manuscript does not contain data collected from humans or animals.

Consent for Publication

Not applicable. The manuscript does not contain any individual person’s data.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, K., Yu, J., Ma, Y. et al. Corn Steep Liquor: Green Biological Resources for Bioindustry. Appl Biochem Biotechnol 194, 3280–3295 (2022). https://doi.org/10.1007/s12010-022-03904-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03904-w

Keywords

Navigation