Skip to main content
Log in

Differential Expression of Calycosin-7-O-β-D-glucoside Biosynthesis Genes and Accumulation of Related Metabolites in Different Organs of Astragalus membranaceus Bge. var. mongholicus (Bge.) Hsiao Under Drought Stress

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Calycosin-7-O-β-D-glycoside (CG), as a flavonoid, plays an important role in the abiotic stress response of Astragalus membranaceus Bge. var. mongholicus (Bge.) Hsiao (A. mongholicus). CG is also an active ingredient in A. mongholicus with high medicinal value. However, the response mechanism of the CG biosynthetic pathway of drought stress is not clear. In this research, drought stress was inflicted upon A. mongholicus, and the variations in flavonoid metabolites and the correlating gene expression in CG biosynthesis were studied in roots, stems, and leaves of A. mongholicus by UHPLC-MRM-MS/MS and qRT-PCR. Drought stress reduced the dry weight and increased the content of malondialdehyde (MDA) and proline. Drought was beneficial to the accumulation of L-phenylalanine and 4-coumaric acid in leaves and promoted the accumulation of all target compounds in the roots, except calycosin. Overexpression of AmIOMT was observed in the leaves, but the content of formononetin which is the product of isoflavone O-methyltransferase (IOMT) catalysis was higher in stems than in leaves. This research aims to further understand the acclimation of abiotic stress and the regulation mechanism of flavonoid accumulation in A. mongholicus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Ramakrishna, A., & Ravishankar, G. A. (2011). Influence of abiotic stress signals on secondary metabolites in plants. Plant signaling & behavior, 6, 1720–1731.

    Article  CAS  Google Scholar 

  2. Cheynier, V., Comte, G., Davies, K., & M., Lattanzio, V., Martens, S. (2013). Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiology and Biochemistry, 72, 1–20.

    Article  CAS  Google Scholar 

  3. Naikoo, M.I., Dar, M.I., Raghib, F., Jaleel, H., Ahmad, B., Raina, A., Khan, F.A, et al.(2019). Plant signaling molecules, Woodhead.

  4. Kirakosyan, A., Seymour, E., Kaufman, P. B., Warber, S., Bolling, S., & Chang, S. C. (2003). Antioxidant capacity of polyphenolic extracts from leaves of Crataegus laevigata and Crataegus monogyna (Hawthorn) subjected to drought and cold stress. Journal of Agricultural and Food Chemistry, 51, 3973–3976.

    Article  CAS  Google Scholar 

  5. Gharibi, S., Tabatabaei, B. E. S., Saeidi, G., Talebi, M., & Matkowski, A. (2019). The effect of drought stress on polyphenolic compounds and expression of flavonoid biosynthesis related genes in Achillea pachycephala Rech.f. Phytochemistry, 162, 90–98.

    Article  CAS  Google Scholar 

  6. Hodaei, M., Rahimmalek, M., Arzani, A., & Talebi, M. (2018). The effect of water stress on phytochemical accumulation, bioactive compounds and expression of key genes involved in flavonoid biosynthesis in Chrysanthemum morifolium L. Industrial Crops and Products, 120, 295–304.

    Article  CAS  Google Scholar 

  7. Das, A., Rushton, P.J., Rohila, J.S.(2017) Metabolomic profiling of soybeans (Glycine max L.) reveals the importance of sugar and nitrogen metabolism under drought and heat stress. Plants-Basel, 6, 21.

  8. Li, W. D., Hou, J. L., Wang, W. Q., Tang, X. M., Liu, C. L., & Xing, D. (2011). Effect of water deficit on biomass production and accumulation of secondary metabolites in roots of Glycyrrhiza uralensis. Russian Journal of Plant Physiology, 58, 538–542.

    Article  CAS  Google Scholar 

  9. Hanson, P., Yang, R., Chang, L., Ledesma, L., & Ledesma, D. (2011). Carotenoids, ascorbic acid, minerals, and total glucosinolates in choysum (Brassica rapa cvg. parachinensis) and kailaan (B. oleraceae Alboglabra group) as affected by variety and wet and dry season production. Journal of Food Composition and Analysis, 24, 950–962.

    Article  CAS  Google Scholar 

  10. Zahir, A., Abbasi, B. H., Adil, M., Anjum, S., Zia, M., & Ihsan, ul h. (2014). Synergistic effects of drought stress and photoperiods on phenology and secondary metabolism of Silybum marianum. Applied Biochemistry and Biotechnology, 174, 693–707.

    Article  CAS  Google Scholar 

  11. Gharibi, S., Tabatabaei, B. E. S., Saeidi, G., & Goli, S. A. H. (2016). Effect of drought stress on total phenolic, lipid peroxidation, and antioxidant activity of Achillea species. Applied Biochemistry and Biotechnology, 178, 796–809.

    Article  CAS  Google Scholar 

  12. Sarker, U., & Oba, S. (2018). Drought stress effects on growth, ROS markers, compatible solutes, phenolics, flavonoids, and antioxidant activity in Amaranthus tricolor. Applied Biochemistry and Biotechnology, 186, 999–1016.

    Article  CAS  Google Scholar 

  13. Sarker, U., Oba, S.(2018). Drought stress enhances nutritional and bioactive compounds, phenolic acids and antioxidant capacity of Amaranthus leafy vegetable. Bmc Plant Biology, 18, 15.

  14. Selmar, D., & Kleinwachter, M. (2013). Influencing the product quality by deliberately applying drought stress during the cultivation of medicinal plants. Industrial Crops and Products, 42, 558–566.

    Article  CAS  Google Scholar 

  15. Rasmussen, S., & Dixon, R. A. (1999). Transgene-mediated and elicitor-induced perturbation of metabolic channeling at the entry point into the phenylpropanoid pathway. The Plant Cell, 11, 1537–1551.

    Article  CAS  Google Scholar 

  16. Pan, H. Y., Wang, Y. G., Zhang, Y. F., Zhou, T. S., Fang, C. M., Nan, P., Wang, X. Q., et al. (2008). Phenylalanine ammonialyase functions as a switch directly controlling the accumulation of calycosin and calycosin-7-O-β-D-glucoside in Astragalus membranaceus var. mongholicus plants. Journal of Experimental Botany, 59, 3027–3037.

    Article  CAS  Google Scholar 

  17. Ebel, J., Schaller-Hekeler, B., Knobloch, K., & H, Wellman, E., Grisebach, H., Hahlbrock, K. (1974). Coordinated changes in enzyme activities of phenyl propanoid metabolism during the growth of soybean cell suspension cultures. Biochimica et Biophysica Acta, 362, 417–424.

    Article  CAS  Google Scholar 

  18. Gross, G. G., Mansell, R. L., & Zenk, M. H. (1975). Hydroxy cinnamate coenzyme a ligase from lignifying tissue of higher plants some properties and taxonomic distribution. Biochemie und Physiologie der Pflanzen, 168, 41–51.

    Article  CAS  Google Scholar 

  19. Kutsuki, H., Shimada, M., & Higuchi, T. (1982). Distribution and roles of phydroxy cinnamate coenzyme a ligase EC-6.2.1.12 in lignin biosynthesis. Phytochemistry, 21, 267–272.

    Article  CAS  Google Scholar 

  20. Harborne, J. B. (1988). The flavonoids: Advances in research since 1980 (pp. 400–426). Routledge.

    Book  Google Scholar 

  21. Dewick, P. M., & Martin, M. (1979). Biosynthesis of pterocarpan iso flavan and coumestan metabolites of Medicago sativa chalcone iso flavone and iso flavanone precursors. Phytochemistry, 18, 597–602.

    Article  CAS  Google Scholar 

  22. Liu, C. J., & Dixon, R. A. (2001). Elicitor-induced association of isoflavone O-methyltransferase with endomembranes prevents the formation and 7-O-methylation of daidzein during isoflavonoid phytoalexin biosynthesis. The Plant Cell, 13, 2643–2658.

    Article  CAS  Google Scholar 

  23. Xu, R. Y., Nan, P., Yang, Y. X., Pan, H. Y., Zhou, T., & S., Chen, J, K. (2011). Ultraviolet irradiation induces accumulation of isoflavonoids and transcription of genes of enzymes involved in the calycosin-7-O-β-D-glucoside pathway in Astragalus membranaceus Bge. var. mongholicus (Bge.) Hsiao. Physiologia Plantarum, 142, 265–273.

    Article  CAS  Google Scholar 

  24. Kong, X. H., Wang, F., Niu, Y. B., Wu, X. L., & Pan, Y. L. (2018). A comparative study on the effect of promoting the osteogenic function of osteoblasts using isoflavones from Radix Astragalus. Phytotherapy Research, 32, 115–124.

    Article  CAS  Google Scholar 

  25. Tsai, C. C., Wu, H. H., Chang, C. P., Lin, C. H., & Yang, H. H. (2019). Calycosin-7-O-β-D-glucoside reduces myocardial injury in heat stroke rats. Journal of the Formosan Medical Association, 118, 730–738.

    Article  Google Scholar 

  26. Yu, D. H., Bao, Y. M., An, L. J., & Yang, M. (2009). Protection of PC12 cells against superoxide-induced damage by isoflavonoids from Astragalus mongholicus. Biomedical and Environmental Sciences, 22, 50–54.

    Article  CAS  Google Scholar 

  27. He, X. R., Han, S. Y., Li, X. H., Zheng, W. X., Pang, L. N., Jiang, S. T., & Li, P. P. (2017). Chinese medicine Bu-Fei decoction attenuates epithelial-mesenchymal transition of non-small cell lung cancer via inhibition of transforming growth factor β1 signaling pathway in vitro and in vivo. Journal of Ethnopharmacology, 204, 45–57.

    Article  Google Scholar 

  28. Jia, X., Sun, C.S., Zuo, Y.C., Li, G.Y., Li, G.B., Ren, L.Y., Chen, G.L.(2016).Integrating transcriptomics and metabolomics to characterise the response of Astragalus membranaceus Bge. var. mongolicus (Bge.) to progressive drought stress. Bmc Genomics,17,16.

  29. Du, Z., & Bramlage, W. J. (1992). Modified thiobarb ituric acid assay for measuring lipid oxidation in sugar-rich plant tissue extracts. Journal of Agricultural and Food Chemistry, 40, 1566–1570.

    Article  CAS  Google Scholar 

  30. Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205–207.

    Article  CAS  Google Scholar 

  31. Kim, Y. B., Thwe, A. A., Li, X., Tuan, P. A., Zhao, S., Park, C. G., Lee, J. W., et al. (2014). Accumulation of flavonoids and related gene expressions in different organs of Astragalus membranaceus Bge. Applied Biochemistry and Biotechnology, 173, 2076–2085.

    Article  CAS  Google Scholar 

  32. Park, Y. J., Thwe, A. A., Li, X., Kim, Y. J., Kim, J. K., et al. (2015). Triterpene and flavonoid biosynthesis and metabolic profiling of hairy roots, adventitious roots, and seedling roots of Astragalus membranaceus. Journal of Agricultural and Food Chemistry, 63, 8862–8869.

    Article  CAS  Google Scholar 

  33. Liu, Y., Liu, J., Wang, Y., Abozeid, A., Tang, Z.H.(2016). Simultaneous determination of six active metabolites in Astragalus mongholicus (Fisch.) Bge. under salt stress by ultra-pressure liquid chromatography with tandem mass spectrometry. Springerplus, 5, 11.

  34. Ashraf, M., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59, 206–216.

    Article  CAS  Google Scholar 

  35. Jia, X., Sun, C.S., Li, G.Y., Li, G.B., Chen, G.L.(2015). Effects of progressive drought stress on the physiology, antioxidative enzymes and secondary metabolites of Radix Astragali. Acta Physiologiae Plantarum, 37, 14.

  36. Carvalho, M. H. C. (2008). Drought stress and reactive oxygen species production, scavenging and signaling. Plant Signaling & Behavior, 3, 156–165.

    Article  Google Scholar 

  37. Ma, D. Y., Sun, D. X., Wang, C. Y., Li, Y. G., & Guo, T. C. (2014). Expression of flavonoid biosynthesis genes and accumulation of flavonoid in wheat leaves in response to drought stress. Plant Physiology and Biochemistry, 80, 60–66.

    Article  CAS  Google Scholar 

  38. Vasquez-Robinet, C., Mane, S. P., Ulanov, A. V., Watkinson, J. I., Stromberg, V. K., De Koeyer, D., Schafleitner, R., et al. (2008). Physiological and molecular adaptations to drought in Andean potato genotypes. Journal of Experimental Botany, 59, 2109–2123.

    Article  CAS  Google Scholar 

  39. Yuan, Y., Liu, Y.J., Wu, C., Chen, S.Q., Wang, Z.Y., Yang, Z.C., Qin, S.S., et al.(2012). Water deficit affected flavonoid accumulation by regulating hormone metabolism in Scutellaria baicalensis Georgi Roots. Plos One, 7, 10.

  40. Nakashima, K., Yamaguchi-Shinozaki, K., Shinozaki, K.(2014). The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Frontiers in Plant Science, 5, 7.

  41. Garcia-Calderon, M., Pons-Ferrer, T., Mrazova, A., Pal’ove-Balang, P., Vilkova, M., Perez-Delgado, C. M., Vega, J., M, et al. (2015). Modulation of phenolic metabolism under stress conditions in a Lotus japonicus mutant lacking plastidic glutamine synthetase. Frontiers in Plant Science, 6, 16.

    Article  Google Scholar 

  42. Lanot, A., Morris, P.(2005). Elicitation of isoflavan phytoalexins. In: Marquez AJ ed. Lotus Japonicus Handbook, Springer, Po Box 17, 3300 Aa Dordrecht, Netherlands, 355–361

  43. Varshney, R.K., Hiremath, P.J., Lekha, P., Kashiwagi, J., Balaji, J., Deokar, A.A., Vadez ,V., et al. (2009).A comprehensive resource of drought- and salinity-responsive ESTs for gene discovery and marker development in chickpea (Cicer arietinum L.). Bmc Genomics, 10, 18.

  44. Wu, Y.Q., Wei, W., Pang, X.Y., Wang, X.F., Zhang, H.L., Dong, B., Xing, Y.P., et al.(2014). Comparative transcriptome profiling of a desert evergreen shrub, Ammopiptanthus mongolicus, in response to drought and cold stresses. Bmc Genomics, 15, 16.

  45. Pan, H. Y., Fang, C. M., Zhou, T. S., Wang, Q. Z., & Chen, J. K. (2007). Accumulation of calycosin and its 7-O-β -D-glucoside and related gene expression in seedlings of Astragalus membranaceus Bge. var. mongholicus (Bge.) Hsiao induced by low temperature stress. Plant Cell Reports, 26, 1111–1120.

    Article  CAS  Google Scholar 

  46. Lykkesfeldt, J., & Moller, B. L. (1993). Synthesis of benzylglucosinolate in Tropaeolum majus L. (isothiocyanates as potent enzyme inhibitors). Plant Physiology, 102, 609–613.

    Article  CAS  Google Scholar 

  47. Qiao, J., Luo, Z.L., Li, Y.P., Ren, G.X., Liu, C.S., Ma, X.J.(2017). Effect of abscisic acid on accumulation of five active components in root of Glycyrrhiza uralensis. Molecules, 22, 11.

  48. Tripathi, P., Rabara, R.C., Reese, R.N., Miller, M.A., Rohila, J.S., Subramanian, S., Shen, Q.X.J., et al.(2016). A toolbox of genes, proteins, metabolites and promoters for improving drought tolerance in soybean includes the metabolite coumestrol and stomatal development genes. Bmc Genomics, 17, 22.

  49. Pi, E. X., Zhu, C. M., Fan, W., Huang, Y. Y., Qu, L. Q., Li, Y. Y., Zhao, Q. Y., et al. (2018). Quantitative phosphoproteomic and metabolomic analyses reveal GmMYB173 optimizes flavonoid metabolism in soybean under salt stress. Molecular & Cellular Proteomics, 17, 1209–1224.

    Article  CAS  Google Scholar 

  50. Janas, K. M., Cvikrova, M., Palagiewicz, A., Szafranska, K., & Posmyk, M. M. (2002). Constitutive elevated accumulation of phenylpropanoids in soybean roots at low temperature. Plant Science, 163, 369–373.

    Article  CAS  Google Scholar 

  51. Dhaubhadel, S., McGarvey, B. D., Williams, R., & Gijzen, M. (2003). Isoflavonoid biosynthesis and accumulation in developing soybean seeds. Plant Molecular Biology, 53, 733–743.

    Article  CAS  Google Scholar 

  52. Dixon, R.A., Paiva, N.L.(1995). Stress-induced phenylpropanoid metabolism. Plant Cell, 7, 1085–1097.

Download references

Funding

This work was supported by the grants from the National Natural Science Foundation of China (Grant Nos. 81660630, 81460578).

Author information

Authors and Affiliations

Authors

Contributions

Yinghui Chen and Bingzhen Li conducted the experiments. Yinghui Chen carried out the data analysis and drafted the manuscript. Guilin Chen, Shuying Sun, and Youla Su provided experimental assistance to Yinghui Chen and Bingzhen Li; Guilin Chen (major parts) and Xin Jia revised the manuscript. Guilin Chen with Yinghui Chen designed the experiments and the manuscript. All authors discussed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to Guilin Chen.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable. The manuscript does not contain any individual person’s data.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 262 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Li, B., Jia, X. et al. Differential Expression of Calycosin-7-O-β-D-glucoside Biosynthesis Genes and Accumulation of Related Metabolites in Different Organs of Astragalus membranaceus Bge. var. mongholicus (Bge.) Hsiao Under Drought Stress. Appl Biochem Biotechnol 194, 3182–3195 (2022). https://doi.org/10.1007/s12010-022-03883-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03883-y

Keywords

Navigation