Skip to main content

Advertisement

Log in

Mimusops elengi Flower-Mediated Green Silver Nanoparticles Control Staphylococcus aureus and Acinetobacter baumannii

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The use of antibiotics against infection-causing bacteria is inactivated, due to the presence of antibiotic-degrading enzymes. These enzymes resist the action of antibiotics and make difficult for the already existing antibiotics to break the drug resistance. Hence, there is a need to formulate alternate therapies against the enzymes providing multidrug resistance to bacteria including Staphylococcus aureus and Acinetobacter baumannii. A silver nanoparticle coated with the natural compounds is a way of finding an alternative to the traditional antibiotics. Objective of the study was to identify and assess Mimusops elengi’s floral silver nanoparticles (MENP) for its effective antibacterial activity. The methods involved were in silico analysis involving screening by ADME; drug likeness and docking of ligand to the protein (CrtM and CTX-M-15); in vitro analysis which included silver nanoparticle preparation; characterization by UV–Vis spectrum; SEM, FT-IR, DLS, and antimicrobial assays which include agar well diffusion, minimum inhibitory concentration, minimum bactericidal concentration, and anti-biofilm assays. The compounds present in the flower extract were identified and their usability against the enzymes under study was assured by silico screening. The in vitro analysis furthermore supports through showing potent antibacterial activity of MENP against selected organisms. Hence both in silico and in vitro studies reveal that MENP can be used as an alternative to break multidrug resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data will be available on request.

Code Availability

Not applicable.

Abbreviations

ADME:

Absorption, digestion, metabolism, and excretion

SEM:

Scanning electron microscopy

FT-IR:

Fourier transform infrared spectroscopy

DLS:

Dynamic light scattering

MENP:

Mimusops elengi Silver nanoparticles

References

  1. Rani, S., & Rahman, K. (2017). Molsari (Mimusops Elengi Linn): A boon drug of traditional medicine. International Journal of Pharmaceutical Sciences Research, 8(1), 17. https://doi.org/10.13040/IJPSR.0975-8232.8(1).17-28

    Article  Google Scholar 

  2. Shyamapada, M. and Bijayanta, S. (2016). Antibacterial activity of Mimusops Elengi leaf, seed and bark extracts alone and in combination with antibiotics against human pathogenic bacteria. Translational Medicine (Sunnyvale). 06https://doi.org/10.4172/2161-1025.1000188

  3. Ssekatawa, K. Byarugaba Denis, K. Kato Charles, D. Wampande Eddie, M. Ejobi Francis, Nakavuma Jesca, L. Maaza Malik, Sackey Juliet, Nxumalo Edward, Kirabira John Baptist. (2021). Green strategy–Based synthesis of silver nanoparticles for antibacterial applications. Frontiers in Nanotechnology. 3https://doi.org/10.3389/fnano.2021.697303

  4. Chhangte, V. S., Lallianrawna, A. B., Selvaraj, M., Changmai, B., & Rokhum, S. L. (2021). Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: A review of recent literature. RSC Advances, 11, 2804–2837. https://doi.org/10.1039/D0RA09941D

    Article  Google Scholar 

  5. Wang, L. L., Hu, C., & Shao, L. Q. (2017). The antimicrobial activity of nanoparticles: Present situation and prospects for the future. International Journal of Nanotechnology, 12, 1227–1249. https://doi.org/10.2147/IJN.S121956

    Article  CAS  Google Scholar 

  6. Leejae, S., Hasap, L., & Voravuthikunchai, S. P. (2013). Inhibition of staphyloxanthin biosynthesis in Staphylococcus aureus by rhodomyrtone, a novel antibiotic candidate. Journal of Medical Microbiology, 62(Pt 3), 421–428. https://doi.org/10.1099/jmm.0.047316-0

    Article  CAS  PubMed  Google Scholar 

  7. Mishra, N. N., Liu, G. Y., Yeaman, M. R., Nast, C. C., Proctor, R. A., McKinnell, J., & Bayer, A. S. (2011). Carotenoid-related alteration of cell membrane fluidity impacts Staphylococcus aureus susceptibility to host defense peptides. Antimicrobial Agents and Chemotherapy, 55(2), 526–531. https://doi.org/10.1128/AAC.00680-10

    Article  CAS  PubMed  Google Scholar 

  8. Mittal, L., Ranjani, S., Shariq Ahmed, M., Jeya Shree, T., Tahira, A., Poompavai, S., Camarillo, I. G., GowriSree, V., Raji, S., & Hemalatha, S. (2020). Turmeric-silver-nanoparticles for effective treatment of breast cancer and to break CTX-M-15 mediated antibiotic resistance in Escherichia coli. Inorganic and Nano-Metal Chemistry, 51(6), 867–874. https://doi.org/10.1080/24701556.2020.1812644

    Article  CAS  Google Scholar 

  9. Ranjani, S., Pradeep, P., Vimalkumar, U. R., Kumar, V., & Hemalatha, S. (2021). Pungent anti-infective nanocolloids manipulate growth, biofilm formation and CTX-M-15 gene expression in pathogens causing Vibriosis. Aquaculture International, 29, 859–869. https://doi.org/10.1007/s10499-021-00660-2

    Article  CAS  Google Scholar 

  10. Sai Nivetha, S., Ranjani, S., & Hemalatha, S. (2022). Synthesis and application of silver nanoparticles using Cissus quadrangularis. Inorganic and Nano-Metal Chemistry, 52(1), 82–89. https://doi.org/10.1080/24701556.2020.1862219

    Article  CAS  Google Scholar 

  11. Sabiha Sulthana, H. B., Ranjani, S., & Hemalatha, S. (2022). Comparison of efficacy of nanoparticles synthesized from leaves and flowers of Russelia equisitiformis. Inorganic and Nano-Metal Chemistry, 52(1), 75–81. https://doi.org/10.1080/24701556.2020.1862218

    Article  CAS  Google Scholar 

  12. Anitha, S., Ranjani, S., & Hemalatha, S. (2021). In silico analysis of quercetin and its analogues against targeted proteins. Biointerface Research in Applied Chemistry, 11(5), 13695–13705.

    Article  Google Scholar 

  13. Rukaiya, HK., Ranjani, S., Sai Nivetha, S., Hemalatha, S. (2021). COVID-19: An in-silico analysis on potential therapeutic uses of trikadu as immune system boosters, Applied Biochemistry and Biotechnology 2021.

  14. Divya, U., Ranjani, S., & Hemalatha, S. (2021). Repurposing of FDA-approved drugs against tuberculosis target MMA4 and CmaA2. Biointerface Research in Applied Chemistry, 11(6), 14688–14696.

    Article  Google Scholar 

  15. Venkatesan, H., Soundhararajan, R., Hemalatha, S. (2021). Interaction of various types of bisphenols with enzymes involved in melanin synthesis. Toxicology and Environmental Health Sciences. 1–6. Advance online publication. https://doi.org/10.1007/s13530-021-00111-8

  16. Ranjani, S., Mohamed Sheik Meeran, S., Prakash, S. P., Mohammad, W., Kandasamy, R., & Hemalatha, S. (2020). Multi potent aromatic nano colloid: Synthesis, characterization and applications. AMB Express, 10(1), 168. https://doi.org/10.1186/s13568-020-01104-5

    Article  CAS  Google Scholar 

  17. Ranjani, S., NoorulSamsoonMaharifa, H., Sahdhiyya, A., & Hemalatha, S. (2021b). Phytotoxicity assessment of synthesized green nanosuspension on germination and growth in Vigna radiata. Inorganic and Nano-Metal Chemistry. https://doi.org/10.1080/24701556.2021.1993916

    Article  Google Scholar 

  18. Ranjani, S., Priya, P. S., Veerasami, M., & Hemalatha, S. (2021). Novel polyherbal nanocolloids to control bovine mastitis. Applied Biochemistry and Biotechnology. https://doi.org/10.1007/s12010-021-03748-w.Advanceonlinepublication.10.1007/s12010-021-03748-w

    Article  PubMed  Google Scholar 

  19. Ranjani, S., Matheen, A., Jenish, A., & Hemalatha, S. (2021). (2021d) Nanotechnology derived natural poly bio-silver nanoparticles as a potential alternate biomaterial to protect against human pathogen. Materials Letters, 304, 130555. https://doi.org/10.1016/j.matlet.2021.130555

    Article  CAS  Google Scholar 

  20. Tahira, A., Khan, M. S., & Hemalatha, S. (2020). Biosynthesis of silver nanoparticles via fungal cell filtrate and their anti-quorum sensing against Pseudomonas aeruginosa. Journal of Environmental Chemical Engineering, 8(6), 104365.

    Article  Google Scholar 

  21. Tahira, A., Vabeiryureilai, M. S., Kumar, N., MubarakAli, D., & Hemalatha, S. (2019). Fungal-mediated synthesis of pharmaceutically active silver nanoparticles and anticancer property against A549 cells through apoptosis. Environmental Science and Pollution Research International, 26, 13649.

    Article  Google Scholar 

  22. Akther, T., Ranjani, S., & Hemalatha, S. (2021). Nanoparticles engineered from endophytic fungi (Botryosphaeria rhodina) against ESBL-producing pathogenic multidrug-resistant E. coli. Environmental Sciences Europe, 33, 83. https://doi.org/10.1186/s12302-021-00524-9

    Article  CAS  Google Scholar 

  23. Ranjani, S. J., & Hemalatha, S. (2021). Differential actions of nanoparticles and nanoemulsion synthesized from Colletotrichum siamense on food borne pathogens. LWT - Food Science and Technology, 155, 112995. https://doi.org/10.1016/j.lwt.2021.112995

    Article  CAS  Google Scholar 

  24. Ranjani, S., Kathun, U. R., & Hemalatha, S. (2021). Silver decorated myconanoparticles control growth and biofilm formation in uropathogenic E. coli. Applied Biochemistry and Biotechnology. https://doi.org/10.2147/NSA.S123681

    Article  PubMed  Google Scholar 

  25. Ranjani, S. F., Begum, I., Santhoshini, J. S., Kumar, N., Ruckmani, K., & Hemalatha, S. (2021). Mimosa pudica floral nanoparticles: A potent antibiotic resistance breaker. Inorganic and Nano-Metal Chemistry, 51(12), 1751–1758. https://doi.org/10.1080/24701556.2020.1852429

    Article  CAS  Google Scholar 

  26. Ranjani, S. S., Ahmed, M., Ruckmani, K., & Hemalatha, S. (2019). Green nanocolloids control multi drug resistant pathogenic bacteria. Journal of Cluster Science, 31, 861–866. https://doi.org/10.1007/s10876-019-01694-6

    Article  CAS  Google Scholar 

  27. Ranjani, S., Tamanna, K. N., & Hemalatha, S. (2019). Triphala green nano colloids: Synthesis, characterization and screening biomarkers. Applied Nanoscience, 10, 1269–1279. https://doi.org/10.1007/s13204-019-01208-w

    Article  CAS  Google Scholar 

  28. Ranjani, S., Das, R., Shariq Ahmed, M., Lalnunmawii, E., Senthilkumar, N., Ruckmani, K., & Hemalatha, S. (2021). Myco-nanocolloids manipulate growth, biofilm formation and virulence genes in UTI causing E coli. Inorganic and Nano-Metal Chemistry, 51(12), 1725–1734. https://doi.org/10.1080/24701556.2020.1852426

    Article  CAS  Google Scholar 

  29. Ranjani, S., Shariq Ahmed, M., Adnan, M., Senthil Kumar, N., Ruckmani, K., & Hemalatha, S. (2021). Synthesis, characterization and applications of endophytic fungal nanoparticles. Inorganic and Nano-Metal Chemistry, 51(2), 280–287. https://doi.org/10.1080/24701556.2020.1784231

    Article  CAS  Google Scholar 

  30. Abinaya, M., Priya, S., Karunya, J. R., Ranjani, S., & Hemalatha, S. (2021). Screening the efficacy of compounds from ghee to control cancer: An in-silico approach. Biointerface Research in Applied Chemistry, 11(6), 14115–14126.

    Article  Google Scholar 

  31. Behuria, H. G., Arumugam, G. S., Pal, C. K., Jena, Ak., & Sahu, S. K. (2021). Lipid flip-flop-inducing antimicrobial phytochemicals from gymnema sylvestre are bacterial membrane permeability enhancers. ACS Omega, 6(51), 35667–35678. https://doi.org/10.1021/acsomega.1c05581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Singh, B. R. (2014). Antibacterial activity of glycerol, lactose, maltose, mannitol, raffinose and xylose. noto-are Noto-are medicine 17223318. Medicine, 7, 192014.

  33. Becker, L. (2007). Final report on the amended safety assessment of propyl gallate1. International Journal of Toxicology, 26, 89–118. https://doi.org/10.1080/10915810701663176

    Article  CAS  Google Scholar 

  34. Ranjani. S., Hemalatha, S. (2022) Triphala decorated nanoparticles with multi potent properties, Materials Letters 308, Part B, 131184. https://doi.org/10.1016/j.matlet.2021.131184

  35. Jemal, K. Sandeep, B.V, Sudhakar, P. (2017). Synthesis, characterization, and evaluation of the antibacterial activity of Allophylus serratus leaf and leaf derived callus extracts mediated silver nanoparticles. Journal of Nanomaterials. https://doi.org/10.1155/2017/4213275

  36. Niraimathi, K. L., Sudha, V., Lavanya, R., & Brindha, P. (2013). Biosynthesis of silver nanoparticles using Alternanthera Sessilis (Linn.) extract and their antimicrobial, antioxidant activities. Colloids and Surfaces. B, Biointerfaces, 102, 288–291. https://doi.org/10.1016/j.colsurfb.2012.08.041

    Article  CAS  PubMed  Google Scholar 

  37. Ghosh, S., Patil, S., Ahire, M., Kitture, R., Kale, S., Pardesi, K., Cameotra, S. S., Bellare, J., Dhavale, D. D., Jabgunde, A., & Chopade, B. A. (2012). Synthesis of silver nanoparticles using Dioscorea Bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. International Journal of Nanomedicine, 7, 483–496. https://doi.org/10.2147/IJN.S24793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pratap, G. M., Manoj, K. M., Sai, S. A., Sujatha, B., & Sreedevi, E. (2012). Evaluation of three medicinal plants for anti-microbial activity. Ayu., 33(3), 423–428. https://doi.org/10.4103/0974-8520.108859

    Article  PubMed  PubMed Central  Google Scholar 

  39. Dror-Ehre, A., Mamane, H., Belenkova, T., Markovich, G., & Adin, A. (2009). Silver nanoparticle E. coli colloidal interaction in water and effect on E. coli survival. Journal of Colloid and Interface Science, 339(2), 521–526. https://doi.org/10.1016/j.jcis.2009.07.052

    Article  CAS  PubMed  Google Scholar 

  40. Łysakowska, M. E., Ciebiada-Adamiec, A., Klimek, L., & Sienkiewicz, M. (2015). The activity of silver nanoparticles (axonnite) on clinical and environmental strains of Acinetobacter Spp. Journal of the International Society for Burn Injuries, 41(2), 364–371. https://doi.org/10.1016/j.burns.2014.07.014

    Article  Google Scholar 

  41. Jyoti, K., Baunthiyal, M., & Singh, A. (2016). Characterization of silver nanoparticles synthesized using Urtica Dioica Linn. leaves and their synergistic effects with antibiotics. Journal of Radiation Research and Applied Sciences, 9(3), 217–227. https://doi.org/10.1016/j.jrras.2015.10.002

    Article  CAS  Google Scholar 

  42. Mohanta, Y. K., Biswas, K., Jena, S. K., Hashem, A. A., Allah, E. F., & Mohanta, T. K. (2020). Anti-biofilm and antibacterial activities of silver nanoparticles synthesized by the reducing activity of phytoconstituents present in the Indian medicinal plants. Frontiers in Microbiology, 11, 1143. https://doi.org/10.3389/fmicb.2020.01143

    Article  PubMed  PubMed Central  Google Scholar 

  43. Martinez-Gutierrez, F., Boegli, L., Agostinho, A., Sánchez, E. M., Bach, H., Ruiz, F., & James, G. (2013). Anti-biofilm activity of silver nanoparticles against different microorganisms. Biofouling, 29(6), 651–660. https://doi.org/10.1080/08927014.2013.794225

    Article  CAS  PubMed  Google Scholar 

  44. Gowhar, A. N., Mustaqeem, M., Israr, U. H., Awan, T., Arshad, F., Salim, H., & Qurashi, A. (2021). Bioinspired and green synthesis of nanoparticles from plant extracts with antiviral and antimicrobial properties: A critical review. Journal of Saudi Chemical Society, 25(9), 101304. https://doi.org/10.1016/j.jscs.2021.101304

    Article  CAS  Google Scholar 

  45. Salayová, A., Bedlovičová, Z., Daneu, N., Baláž, M. L., Bujňáková, Z., Balážová, Ľ, & Tkáčiková, Ľ. (2021). Green synthesis of silver nanoparticles with antibacterial activity using various medicinal plant extracts: Morphology and antibacterial efficacy. Nanomaterials (Basel, Switzerland), 11(4), 1005. https://doi.org/10.3390/nano11041005

    Article  CAS  Google Scholar 

  46. Hano, C., & Abbasi, B. H. (2021). Plant-based green synthesis of nanoparticles: Production, characterization and applications. Biomolecules, 12(1), 31. https://doi.org/10.3390/biom12010031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors are thankful to B.S. Abdur Rahman Institute of Science and Technology, Chennai for providing research facilities in school of life sciences. The authors also gratefully acknowledge the Ministry of Science and Technology, Department of Science and Technology (KIRAN Division) (GoI), New Delhi (Ref No. DST/WOS-B/2018/1583-HFN (G)) and ASEAN University network (AUN)/Southeast Asia Engineering Education Development Network (SEED)/Japan International Cooperation Agency (JICA) SPRAC (SN042/MI.KU/2020)

Funding

Ministry of Science and Technology, Department of Science and Technology (KIRAN Division) (GoI), New Delhi (Ref No. DST/WOS-B/2018/1583-HFN (G)) and ASEAN University network (AUN)/Southeast Asia Engineering Education Development Network (SEED)/Japan International Cooperation Agency (JICA) SPRAC (SN042/MI.KU/2020).

Author information

Authors and Affiliations

Authors

Contributions

SH conceived and designed research. SR and CNJ conducted experiments. SH analyzed data. All authors wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Hemalatha S.

Ethics declarations

Ethics approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All authors read and approved the manuscript for publication.

Conflicts of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Charlz Nithin J and Ranjani S contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

J, C.N., S, R. & S, H. Mimusops elengi Flower-Mediated Green Silver Nanoparticles Control Staphylococcus aureus and Acinetobacter baumannii. Appl Biochem Biotechnol 194, 3066–3081 (2022). https://doi.org/10.1007/s12010-022-03882-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03882-z

Keywords

Navigation