Skip to main content
Log in

Stimulation of Secondary Metabolites and γ-Terpinene Synthase by Silver Nanoparticles in Callus Cultures of Carum carvi

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Biotechnology and nanotechnology are important tools for understanding biochemical pathways. They can be used efficiently for stimulating and increasing the production of secondary metabolites in medicinal plants. The present study aimed to identify the γ-terpinene synthase gene (CcTPS2) as an effective contributor to the biosynthetic pathway of monoterpenes. The effects of silver nanoparticles (AgNPs; 50 and 100 mg l− 1) and time (24 and 48 h) were examined on secondary metabolites in cell suspension cultures of Carum carvi. This involved the identification, isolation, and sequencing of a partial sequence in the CcTPS2 gene of C. carvi. The genomic sequence of CcTPS2 comprised 292 bp which were organized into two exons (110 and 82 bp) and one intron (100 bp), while the cDNA was 192 bp. In the scale of nucleotides, the CcTPS2 gene showed 96% similarity with the TPS2 gene of Oliveria decumbens. We generated sequence data of the CcTPS2 gene for the first time in this species, thereby enabling further developments in understanding the molecular mechanisms responsible for terpene biosynthesis and other chemical derivatives in C. carvi. The results of GC/MS and GC/FID showed that AgNPs strongly affected the secondary metabolites in cell suspension cultures of C. carvi. According to the results, the AgNPs (50 mg l− 1) increased p-cymene and carvone contents in comparison with the control. The exposure of plants to 100 mg l− 1 AgNPs induced the production of thymol and carvacrol. The results of real-time PCR revealed that the exposure of plants to 100 mg l− 1 AgNPs caused a significant upregulation of CcTPS2 expression for 24 h. These cell suspension cultures were elicited by AgNPs, the application of which proved as an effective method to improve the production of secondary metabolites in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. von Maydell, D., Brandes, J., Lehnert, H., Junghanns, W., & Marthe, F. (2021). Breeding synthetic varieties in annual caraway: Observations on the outcrossing rate in a polycross using a high-throughput genotyping system. Euphytica, 217(1), 1–15

    Article  CAS  Google Scholar 

  2. von Maydell, D., Lehnert, H., Berner, T., Klocke, E., Junghanns, W., Keilwagen, J., & Marthe, F. (2020). On genetic diversity in caraway: Genotyping of a large germplasm collection. PLoS One, 15(12), e0244666

  3. Fang, R., Jiang, C. H., Wang, X. Y., Zhang, H. M., Liu, Z. L., Zhou, L. … Deng, Z. W. (2010). Insecticidal activity of essential oil of Carum carvi fruits from China and its main components against two grain storage insects. Molecules, 15(12), 9391–9402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Khaleel, A. (2004). Volatiles from flower of selected apiaceous species. Egyptian Journal of Biomedical Sciences, 15, 102–113

    CAS  Google Scholar 

  5. Rao, G. V., Annamalai, T., Sharlene, C., Mukhopadhyay, T., & Madhavi, M. S. (2011). Secondary metabolites and biological studies of seeds of Carum carvi Linn. Journal of Pharmacy Research, 4(7), 2126–2128

    CAS  Google Scholar 

  6. Matsumura, T., Ishikawa, T., & Kitajima, J. (2002). Water-soluble constituents of caraway: aromatic compound, aromatic compound glucoside and glucides. Phytochemistry, 61(4), 455–459

    Article  CAS  PubMed  Google Scholar 

  7. Aćimović, M., Oljača, S., Tešević, V., Todosijević, M., & Đisalov, J. (2014). Evaluation of caraway essential oil from different production areas of Serbia. Horticultural Science, 41(3), 122–130

    Article  Google Scholar 

  8. Lima, A. S., Lukas, B., Novak, J., Figueiredo, A. C., Pedro, L. G., Barroso, J. G., & Trindade, H. (2011). Genomic characterization of γ-terpinene synthase from Thymus caespititius. Planta Medica, 77(12), PI9

    Article  Google Scholar 

  9. Lima, A. S., Schimmel, J., Lukas, B., Novak, J., Barroso, J. G., Figueiredo, A. C. … Trindade, H. (2013). Genomic characterization, molecular cloning and expression analysis of two terpene synthases from Thymus caespititius (Lamiaceae). Planta, 238(1), 191–204

    Article  CAS  PubMed  Google Scholar 

  10. Poulose, A. J., & Croteau, R. (1978). γ-Terpinene synthetase: A key enzyme in the biosynthesis of aromatic monoterpenes. Archives of Biochemistry and Biophysics, 191(1), 400–411

    Article  CAS  PubMed  Google Scholar 

  11. Lücker, J., Tamer, E., Schwab, M. K., Verstappen, W., van der Plas, F. W. A., Bouwmeester, L. H. W., & Verhoeven, H. A. (2002). Monoterpene biosynthesis in lemon (Citrus limon) cDNA isolation and functional analysis of four monoterpene synthases. European Journal of Biochemistry, 269(13), 3160–3171

    Article  PubMed  CAS  Google Scholar 

  12. uzuki, Y., Sakai, H., Shimada, T., Omura, M., Kumazawa, S., & Nakayama, T. (2004). Characterization of γ-terpinene synthase from Citrus unshiu (Satsuma mandarin). BioFactors, 21(1‐4), 79–82

    Google Scholar 

  13. Galata, M., Sarker, L. S., & Mahmoud, S. S. (2014). Transcriptome profiling, and cloning and characterization of the main monoterpene synthases of Coriandrum sativum L. Phytochemistry, 102, 64–73

    Article  CAS  PubMed  Google Scholar 

  14. Mueller-Uri, F., Egerer-Sieber, C., Rudolph, K., Kreis, W., & Muller, Y. (2015). γ-Terpinene synthase of Thymus vulgaris. Planta Medica, 81(16), PM240

    Article  Google Scholar 

  15. Alekseeva, M., Zagorcheva, T., Atanassov, I., & Rusanov, K. (2020). Origanum vulgare L.—A review on genetic diversity, cultivation, biological activities, and perspectives for molecular breeding. Bulgarian Journal of Agricultural Science, 26, 1183–1197

    Google Scholar 

  16. Tohidi, B., Rahimmalek, M., Arzani, A., & Trindade, H. (2020). Sequencing and variation of terpene synthase gene (TPS2) as the major gene in biosynthesis of thymol in different Thymus species. Phytochemistry, 169, 112126

    Article  CAS  PubMed  Google Scholar 

  17. Ashaari, N. S., Ab. Rahim, M. H., Sabri, S., Lai, K. S., Song, A. A. L., Rahim, A. … Abdullah, R. O., J (2020). Functional characterization of a new terpene synthase from Plectranthus amboinicus. PLoS One, 15(7), e0235416

  18. Sasheva, P., Letkarska, G., & Ionkova, I. (2013). Biotechnological production of podophyllotoxin and podophyllotoxin-related lignans in cultures of Linum thracicum Degen. Comptes Rendus de l’Academie bulgare des Sciences, 66(10), 1445–1450

    CAS  Google Scholar 

  19. Anjum, S., Abbasi, B. H., & Hano, C. (2017). Trends in accumulation of pharmacologically important antioxidant-secondary metabolites in callus cultures of Linum usitatissimum L. Plant Cell, Tissue and Organ Culture (PCTOC), 129(1), 73–87

  20. Manjkhola, S., Dhar, U., & Joshi, M. (2005). Organogenesis, embryogenesis, and synthetic seed production in Arnebia euchroma—A critically endangered medicinal plant of the Himalaya. In Vitro Cellular & Developmental Biology-Plant, 41(3), 244–248

    Article  Google Scholar 

  21. Rani, R., Khan, M. A., Kayani, W. K., Ullah, S., Naeem, I., & Mirza, B. (2017). Metabolic signatures altered by in vitro temperature stress in Ajuga bracteosa Wall. ex Benth. Acta Physiologiae Plantarum, 39(4), 97

    Article  CAS  Google Scholar 

  22. Farajpour, M., Ebrahimi, M., Amiri, R., Golzari, R., & Sanjari, S. (2012). Assessment of genetic diversity in Achillea millefolium accessions from Iran using ISSR marker. Biochemical Systematics and Ecology, 43, 73–79

    Article  CAS  Google Scholar 

  23. Farajpour, M., Ebrahimi, M., Amiri, R., Nori, S. A. S., & Golzari, R. (2011). Investigation of variations of the essential oil content and morphological values in yarrow (Achillea santolina) from Iran. Journal of Medicinal Plants Research, 5(17), 4393–4395

    Google Scholar 

  24. Ebrahimi, M., Farajpour, M., Hadavand, H., Bahmani, K., & Khodaiyan, F. (2012). Essential oil variation among five Achillea millefolium ssp. elbursensis collected from different ecological regions of Iran. Annals of Biological Research, 3(7), 3248–3253

    CAS  Google Scholar 

  25. Zhao, J. L., Zhou, L. G., & Wu, J. Y. (2010). Effects of biotic and abiotic elicitors on cell growth and tanshinone accumulation in Salvia miltiorrhiza cell cultures. Applied Microbiology and Biotechnology, 87(1), 137–144

    Article  CAS  PubMed  Google Scholar 

  26. Ghazal, B., Saif, S., Farid, K., Khan, A., Rehman, S., Reshma, A. … Rahman, L. (2018). Stimulation of secondary metabolites by copper and gold nanoparticles in submerge adventitious root cultures of Stevia rebaudiana (Bert.). IET Nanobiotechnology, 12(5), 569–573

    Article  PubMed  PubMed Central  Google Scholar 

  27. Winson, K. W. S., Chew, B. L., Sathasivam, K., & Subramaniam, S. (2020). The establishment of callus and cell suspension cultures of Hylocereus costaricensis for the production of betalain pigments with antioxidant potential. Industrial Crops and Products, 155, 112750

    Article  CAS  Google Scholar 

  28. Fazal, H., Abbasi, B. H., Ahmad, N., & Ali, M. (2016). Elicitation of medicinally important antioxidant secondary metabolites with silver and gold nanoparticles in callus cultures of Prunella vulgaris L. Applied Biochemistry and Biotechnology, 180(6), 1076–1092

    Article  CAS  PubMed  Google Scholar 

  29. Jaccoud, D., Peng, K., Feinstein, D., & Kilian, A. (2001). Diversity arrays: A solid state technology for sequence information independent genotyping. Nucleic Acids Research, 29(4), e25–e25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2 – ∆∆CT method. Methods, 25(4), 402–408

  31. Raal, A., Arak, E., & Orav, A. (2012). The content and composition of the essential oil found in Carum carvi L. commercial fruits obtained from different countries. Journal of Essential Oil Research, 24(1), 53–59

    Article  CAS  Google Scholar 

  32. Laribi, B., Kouki, K., Mougou, A., & Marzouk, B. (2010). Fatty acid and essential oil composition of three Tunisian caraway (Carum carvi L.) seed ecotypes. Journal of the Science of Food and Agriculture, 90(3), 391–396

    Article  CAS  PubMed  Google Scholar 

  33. Abu-Lafi, S., Odeh, I., Dewik, H., Qabajah, M., Hanuš, L. O., & Dembitsky, V. M. (2008). Thymol and carvacrol production from leaves of wild Palestinian Majorana syriaca. Bioresource Technology, 99(9), 3914–3918

    Article  CAS  PubMed  Google Scholar 

  34. Ibraliu, A., Mi, X., & Elezi, F. (2011). Variation in essential oils to study the biodiversity in Satureja montana L. Journal of Medicinal Plants Research, 5(14), 2978–2989

    CAS  Google Scholar 

  35. Simic, A., Rančic, A., Sokovic, M. D., Ristic, M., Grujic-Jovanovic, S., Vukojevic, J., & Marin, P. D. (2008). Essential oil composition of Cymbopogon winterianus. and Carum carvi. and their antimicrobial activities. Pharmaceutical Biology, 46(6), 437–441

    Article  CAS  Google Scholar 

  36. Laribi, B., Kouki, K., Bettaieb, T., Mougou, A., & Marzouk, B. (2013). Essential oils and fatty acids composition of Tunisian, German and Egyptian caraway (Carum carvi L.) seed ecotypes: A comparative study. Industrial Crops and Products, 41, 312–318

    Article  CAS  Google Scholar 

  37. Lasram, S., Zemni, H., Hamdi, Z., Chenenaoui, S., Houissa, H., Tounsi, M. S., & Ghorbel, A. (2019). Antifungal and antiaflatoxinogenic activities of Carum carvi L., Coriandrum sativum L. seed essential oils and their major terpene component against Aspergillus flavus. Industrial Crops and Products, 134, 11–18

    Article  CAS  Google Scholar 

  38. Moola, A. K., Kumar, T. S., & Kumari, B. D. R. (2021). Enhancement of Celastrol compound by silver nanoparticles and acetosyringone in Celastrus paniculatus Willd. through adventitious and hairy root culture. Journal of Plant Biochemistry and Biotechnology, 43, 1–6

  39. Ali, A., Mohammad, S., Khan, M. A., Raja, N. I., Arif, M., Kamil, A., & Mashwani, Z. R. (2019). Silver nanoparticles elicited in vitro callus cultures for accumulation of biomass and secondary metabolites in Caralluma tuberculata. Artificial Cells, Nanomedicine, and Biotechnology, 47(1), 715–724

    Article  CAS  PubMed  Google Scholar 

  40. Vannini, C., Domingo, G., Onelli, E., Prinsi, B., Marsoni, M., Espen, L., & Bracale, M. (2013). Morphological and proteomic responses of Eruca sativa exposed to silver nanoparticles or silver nitrate. PLoS One, 8(7), 68752

    Article  CAS  Google Scholar 

  41. Batool, S. U., Javed, B., Zehra, S. S., Mashwani, Z.-R., Raja, N. I., Khan, T., … Hashem, M. (2021). Exogenous applications of bio-fabricated silver nanoparticles to improve biochemical, antioxidant, fatty acid and secondary metabolite contents of sunflower. Nanomaterials, 11(7), 1750

  42. Chung, I. M., Rekha, K., Rajakumar, G., & Thiruvengadam, M. (2018). Elicitation of silver nanoparticles enhanced the secondary metabolites and pharmacological activities in cell suspension cultures of bitter gourd. 3 Biotech, 8(10), 1–12

    Article  Google Scholar 

  43. Ghanati, F., & Bakhtiarian, S. (2014). Effect of methyl jasmonate and silver nanoparticles on production of secondary metabolites by Calendula officinalis L (Asteraceae). Tropical Journal of Pharmaceutical Research, 13(11), 1783–1789

    Article  CAS  Google Scholar 

  44. Kaveh, R., Li, Y. S., Ranjbar, S., Tehrani, R., Brueck, C. L., & Van Aken, B. (2013). Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environmental Science & Technology, 47(18), 10637–10644

    Article  CAS  Google Scholar 

  45. Gupta, S. D., Agarwal, A., & Pradhan, S. (2018). Phytostimulatory effect of silver nanoparticles (AgNPs) on rice seedling growth: An insight from antioxidative enzyme activities and gene expression patterns. Ecotoxicology and Environmental Safety, 161, 624–633

    Article  CAS  PubMed  Google Scholar 

  46. Mosa, K. A., El-Naggar, M., Ramamoorthy, K., Alawadhi, H., Elnaggar, A., Wartanian, S., … Hani, H. (2018). Copper nanoparticles induced genotoxicty, oxidative stress,and changes in superoxide dismutase (SOD) gene expression in cucumber (Cucumis sativus)plants. Frontiers in Plant Science, 9, 872

  47. Syu, Y., Hung, J. H., Chen, J. C., & Chuang, H. (2014). Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiology and Biochemistry, 83, 57–64

    Article  CAS  PubMed  Google Scholar 

  48. Naghdibadi, H., Abdollahi, M., Mehrafarin, A., Ghorbanpour, M., Tolyat, M., & Qaderi, A. (2017). An overview on two valuable natural and bioactive compounds, thymol and carvacrol, in medicinal plants. Journal of Medicinal Plants, 16(63), 1–32

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MO and RA conceived and designed the research. ZD conducted experiments and wrote the manuscript. MO, RA, and AE elaborated on the results and discussion, while doing a critical reading of the manuscript. All authors read and confirmed the current manuscript.

Corresponding author

Correspondence to Mansoor Omidi.

Ethics declarations

Ethical Approval

Not required.

Consent to Participate

All authors have their consent to participate.

Consent to Publish

All authors have their consent to publish their work.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehghani-Aghchekohal, Z., Omidi, M., Azizinezhad, R. et al. Stimulation of Secondary Metabolites and γ-Terpinene Synthase by Silver Nanoparticles in Callus Cultures of Carum carvi. Appl Biochem Biotechnol 194, 3228–3241 (2022). https://doi.org/10.1007/s12010-022-03879-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03879-8

Keywords

Navigation